Laser directed energy deposition (LDED) was used with a powder blend comprising 75 wt.% Rene 142 and 25 wt.% of Merl 72 (4275M72) for turbine blade tip repair applications. Sound samples could be deposited at ambient temperature on Haynes 230. The microstructural analyses showed the presence of fine gamma prime precipitates in the as-deposited samples, while after aging, the alloy possessed around 40 vol.% with a bimodal precipitate size distribution. Also, the alloy contained Ta-Hf-W carbides in different sizes and shapes. Tensile testing from room temperature up to 1366 K was performed. The 4275M72 deposits possessed higher tensile properties compared to Rene 80 in this temperature range but lower elongations at the elevated temperatures. The creep properties of 4275M72 samples at 1255 K were superior to Rene 80. Also, the oxidation resistance of deposited 4275M72 was similar to Rene 142. The combination of high mechanical properties, creep behavior, and oxidation resistance of LDEDed 4275M72 makes it a suitable alloy for tip repair of turbine blades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.