A linear stability analysis was carried out for a dilute suspension of rigid spherical particles in cylindrical Couette flow. The perturbation equations for both the continuous fluid phase and the discontinuous particle phase were decomposed into normal modes resulting in an eigenvalue problem that was solved numerically. At a given radius ratio, the theoretical critical Taylor number at which Taylor vortices first appear decreases as the particle concentration increases. Increasing the ratio of particle density to fluid density above one decreases the stability. However, using an effective Taylor number based on the suspension density and viscosity largely accounts for this effect. The axial wave number is the same for a suspension as it is for a pure fluid. Experiments using neutrally buoyant particles in a Taylor-Couette apparatus show that the flow is more stable as the particle concentration increases. The reason that the theory does not fully capture the physics of the flow should be addressed in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.