Hypoxia is an independent prognostic indicator of poor outcome in several malignancies. However, precise mechanism through which hypoxia promotes disease aggressiveness is still unclear. Here, we report that under hypoxia (1% O2), human prostate cancer (PCA) cells, and extracellular vesicles (EVs) released by these cells, are significantly enriched in triglycerides due to the activation of lipogenesis-related enzymes and signaling molecules. This is likely a survival response to hypoxic stress as accumulated lipids could support growth following reoxygenation. Consistent with this, significantly higher proliferation was observed in hypoxic PCA cells following reoxygenation associated with rapid use of accumulated lipids. Importantly, lipid utilization inhibition by CPT1 inhibitor etomoxir and shRNA-mediated CPT1-knockdown significantly compromised hypoxic PCA cell proliferation following reoxygenation. Furthermore, COX2 inhibitor celecoxib strongly reduced growth and invasiveness following hypoxic PCA cells reoxygenation, and inhibited invasiveness induced by hypoxic PCA EVs. This establishes a role for COX2 enzymatic products in the enhanced PCA growth and invasiveness. Importantly, concentration and loading of EVs secreted by PCA cells were significantly compromised under delipidized serum condition and by lipogenesis inhibitors (fatostatin and silibinin). Overall, present study highlights the biological significance of lipid accumulation in hypoxic PCA cells and its therapeutic relevance in PCA.
Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity.
Purpose To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to vesicating agent, nitrogen mustard (NM), a bi-functional alkylating analog of chemical warfare agent sulfur mustard (SM). Methods Toxic effects and associated mechanisms were examined in maximal affected corneal tissue employing corneal cultures and human corneal epithelial (HCE) cells exposed to nitrogen mustard (NM). Results Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation and levels of VEGF, COX-2 and MMP-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53 and H2A.X ser139 levels. NM exposure also induced caspase-3 and PARP cleavage, suggesting their involvement in NM-induced apoptotic death in rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in COX-2, MMP-9 and VEGF levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation and neovascularization. NM exposure also induced activation of AP-1 transcription factor proteins and upstream signaling pathways including MAPKs and Akt, suggesting that these could be key factors involved in NM-induced corneal injury. Conclusion Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant–induced ocular injuries, which could be helpful in the development of targeted therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.