This paper presents time-resolved adsorption behavior of lysozyme, bovine serum albumin (BSA), and immunogamma globulin (IgG) onto a liquid crystal phthalocyanine surface and concentrates on the kinetic, viscoelastic variation, interfacial hydration, and structural details obtained by quartz crystal microbalance dissipating monitoring (QCM-D) technique with the Voigt model. The rate of adsorption for lysozyme is faster than that of BSA and IgG. The Freundlich model can explain the adsorption isotherm of lysozyme, whereas an exponential growth model can describe that of BSA and IgG. Layer surface coverage has been found to increase for all three proteins with significant variation in surface packing density and viscoelastic parameters within the investigated concentration range. The adsorbed IgG and BSA form soft, water-rich multilayers with large energy dissipation. The layer viscosity and shear modulus have been found to decrease as the protein hydration increases with concentration in these cases. On the other hand, lysozyme forms a rigid, negligibly hydrated multilayer with higher values of viscosity, shear modulus. Among three proteins, IgG is found to be a good adsorbent for liquid crystal surface comparing their theoretical monolayer surface coverage.
Silver-particle-incorporated polyurethane films were evaluated for antimicrobial activity towards two different bacteria: Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Distributed silver particles sourced from silver nitrate, silver lactate and preformed silver nanoparticles were mixed with polyurethane (PU) and variously characterized by field emission scanning electron microscopy (FESEM), fourier transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD) and contact angle measurement. Antibacterial activity against E.coli was confirmed for films loaded with 10% (w/w) AgNO3, 1% and 10% (w/w) Ag lactate and preformed Ag nanoparticles. All were active against S. aureus, but Ag nanoparticles loaded with PU had a minor effect. The apparent antibacterial performance of Ag lactate-loaded PU is better than other Ag ion-loaded films, revealed from the zone of inhibition study. The better performance of silver lactate-loaded PU was the likely result of a porous PU structure. FESEM and FTIR indicated direct interaction of silver with the PU backbone, and XRD patterns confirmed that face-centred cubic-type silver, representative of Ag metal, was present. Young’s modulus, tensile strength and the hardness of silver containing PU films were not adversely affected and possibly marginally increased with silver incorporation. Dynamic mechanical analysis (DMA) indicated greater thermal stability.
Polymeric membranes have been used as interfaces between implantable devices and biological tissues to operate as a protective barrier from water exchanging and to enhance biocompatibility. Polyurethanes have been used as biocompatible membranes for decades. In this study, copolymers of polyether urethane (PEU) with polydimethylsiloxane (PDMS) were synthesised with the goal of creating materials with low water permeability and high elasticity. PDMS was incorporated into polymer backbone as a part of the soft segment during polyurethane synthesis and physical properties as well as water permeability of resulting copolymer were studied in regard to PDMS content. Increase in PDMS content led to increase of microphase separation of the copolymer and corresponding increase in elastic modulus. Surface energy of the polymer was decreased by incorporating PDMS compared to unmodified PEU. PDMS in copolymer formed a hydrophobic surface which caused reduction in water permeability and water uptake of the membranes. Thus, PDMS containing polyurethane with its potent water resistant properties demonstrated a great promise for use as an implantable encapsulation material.
The detection sensitivity of silver nanoparticle (AgNP)-tagged goat immunoglobulin G (gIgG) microarrays was investigated by studying surface plasmon resonance (SPR) images captured in the visible wavelength range with the help of a Kretchmann-configured optical coupling set-up. The functionalization of anti-gIgG molecules on the AgNP surface was studied using transmission electron microscopy, photon correlation measurements and UV-visible absorption spectroscopy. A value of 1.3 Â 10 7 M 21 was obtained for the antibody-antigen binding constant by monitoring the binding events at a particular resonance wavelength. The detection limit of this SPR imaging instrument is 6.66 nM of gIgG achieved through signal enhancement by a factor of larger than 4 owing to nanoparticle tagging with the antibody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.