Macro fiber composite (MFC) has been extensively used in actuator/sensor/harvester applications. Fatigue due to cyclic high electric fields in actuator applications has been studied extensively. However, fatigue failure of MFC due to high stress or strains in energy harvesting applications has attracted little attention. The aim of the study is to obtain the upper limit of dynamic strain on MFC which can be used as failure limit in the design process of piezoelectric energy harvesters (PEHs). The examined PEH is comprised of a cantilever beam made of aluminum and a patch of MFC bonded at its root for power generation. Energy harvesting tests are conducted at various base accelerations around 30Hz (near resonant frequency) and the voltage output and maximum strain on MFC are measured. Severe loss in the performance of the harvester is observed within half million cycles of testing at high strain amplitude. Hence several reliability tests for extended periods of time are carried out at various strain amplitudes. The harvesters are tested at resonant frequencies around 30Hz and 135Hz for over 20 million and 60 million cycles, respectively. Degradation in voltage output, change in natural frequency and formation of cracks are considered as failures. Based on the experimental results, an upper limit 22 of 600μϵ is proposed as the safe amplitude of strain for reliable performance of MFC. Tensile tests are also carried out on MFC patches to understand the formation of cracks and shift in resonant frequency at low strains. It is observed that cracks are formed in MFC at strains as low as 1000μϵ. The observations from this work are also applicable to MFC bending actuators undergoing cyclic strains.
Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction.
Cantilever-based piezoelectric energy harvesting from ambient vibrations is a viable solution for powering wireless sensors and low-power electronic devices. For realization of such technology, it is imperative to design the energy harvester with higher power output and wider operating bandwidth. The main practical constraints on the design of harvester are system mass, volume, and strength of the material. In pursuit of better performance, material strength has yet been considered in designing nonlinear energy harvesters in the literature. This article focuses on the design optimization of nonlinear energy harvester with magnetic oscillator within the limits of allowable strain on piezoelectric material. Parametric study is carried out to find the optimal configuration of nonlinear energy harvester. Experiments show that compared to the linear configuration, the optimized nonlinear energy harvester achieves higher power output and wider bandwidth with maximum strain on piezoelectric material below the allowable limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.