Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by proteintyrosine phosphatases (PTPs). IntroductionAcute myeloid leukemia (AML) is the most frequent leukemia in adults with improving but still limited treatment possibilities, notably in elderly patients. 1,2 It arises by malignant transformation of myeloid progenitor cells. Among the contributing genetic lesions, mutations in the class III receptor tyrosine kinase (RTK) FMS-like tyrosine kinase 3 (FLT3) occur in approximately 30% of patients. 3 The prevalent type of FLT3 mutations are internal tandem duplications (ITD) of amino acid stretches in the juxtamembrane domain or in the tyrosine kinase domain, 4,5 which confer cytokineindependent proliferation and resistance to apoptosis, and causally contribute to AML in combination with additional genetic lesions. 1 Compared with the ligand-activated wild-type (WT) FLT3, FLT3 ITD mutants exhibit not only elevated but also altered signaling quality, with very pronounced activation of signal transducer and activator of transcription (STAT)5 as one characteristic feature. 6,7 FLT3 ITD also causes the production of high levels of reactive oxygen species (ROS). 8,9 Signal transduction of RTKs is regulated by protein-tyrosine phosphatases (PTPs). PTPs prevent ligand-independent RTK activation, and contribute to modulation and termination of ligand-induced signaling. 10 The activity of PTPs is regulated at several different levels. 11 One regulatory principle is the reversible oxidation of the PTP active-site cysteine, which leads to reversible inactivation. 12,13 Temporary inactivation of negatively regulating PTPs by this mechanism is believed to be important for efficient RTK signal propagation in the cell. 14 A major ROS causing cellular PTP oxidation is hydrogen peroxide (H 2 O 2 ), which can be generated by a dismutase reaction from superoxide anions, the reaction products of NADPH-oxidases. Activation of the NADPH oxidase isoform 1 (NOX1) occurs downstream of RTK activation, and involves activation and membrane translocation of the small guanosine triphosphate (GTP)ase Rac1. 15 ROS generation in the cell is counteracted by efficient ROS decomposing systems. 16 These include peroxiredoxins (Prx), which have a very low K m for H 2 O 2 and can eliminate it even at low concentrations. 17 Relatively little is known about PTPs regulating FLT3 signal transduction. We have previously shown that the nontransmembrane PTPs PTP1B and SHP-1 can potently dephosphorylate FLT3 on overexpression. Further, PTP1B appears important for suppressing signaling of newly synthesized FLT3. 7,18 SHP-2 acts as a positive regulator, because it is important for Erk activation and proliferation induced by ligand-activated WT FLT3. However, it is dispensable for FLT3 ITD-mediated transformation. 19 We previously performed a shRNA-based screen to identify PTPs regulating WT FLT3. The initial screen assessed the effects of shRNAs for 20 PTPs on FL-induced Erk1/2 activation in WT FLT3-expressing 32D cells. Among several potentia...
Phosphorylation of wild type FLT3 and AML-associated mutant FLT3 was recently analyzed using site-specific phosphotyrosine antibodies (15). Interestingly, the phosphorylation pattern of the different FLT3 variants showed quantitative and also qualitative differences. Although FLT3-ITD or mutations in the kinase domain resulted in ligand-independent FLT3 autophosphorylation and signaling activity, the wild type receptor is only autophosphorylated in response to stimulation with its cytokine FL.Signaling of receptor tyrosine kinases is modulated by protein-tyrosine phosphatases (PTP) (16), and aberrations in PTP function play a role in carcinogenesis (17). Some PTP, notably SHP-2, have been found to positively influence growth-stimulatory signaling pathways, and mutations leading to gain-offunction of these PTP can potentially be oncogenic. It has been demonstrated that SHP-2 directly interacts with FLT3 in a phosphorylation-dependent manner via phosphotyrosine 599. Table S1. 1 To whom correspondence should be addressed. Tel.: 49-3641-9395634; Fax:49-3641-9395602; E-mail: joerg.mueller2@med.uni-jena.de.2 The abbreviations used are: AML, acute myeloid leukemia; PTP, proteintyrosine phosphatase; FL, FLT3 ligand; PLC␥, phospholipase C␥; ITD, internal tandem duplication; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
Aerosol ICS dissolution into the limited aqueous fluid volume differed kinetically due to ICS solubility and aerosol mass, size, formulation and/or generation.
Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation.
Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage‐specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm‐like cells, lateral plate mesoderm‐like cells, and neural crest‐like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest‐derived OPs—a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.