In this work we present an alternative derivation of the general relativistic acoustic analogue geometry by perturbing the mass accretion rate or flux of an ideal fluid flowing radially in a general static and spherically symmetric spacetime. To the best of our knowledge, this has so far been done in non-relativistic scenario. The resulting causal structure of the two dimensional acoustic geometry is qualitatively similar to that one derives via the perturbation of the velocity potential. Using this, we then briefly discuss the stability issues by studying the wave configurations generated by the perturbation of the mass accretion rate, and formally demonstrate the stability of the accretion process. This is in qualitative agreement with earlier results on stability, established via study of wave configurations generated by the perturbation of velocity potential, by using the acoustic geometry associated with it. We further discuss explicit examples of the Schwarzschild and Rindler spacetimes.
We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by a asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.