One of the major impediments in deployment of Autonomous Driving Systems (ADS) is their safety and reliability. The primary reason for the complexity of testing ADS is that it operates in an open world characterized by its non-deterministic, high-dimensional and non-stationary nature where the actions of other actors in the environment are uncontrollable from the ADS's perspective. This leads to a state space explosion problem and one way of mitigating this problem is by concretizing the scope for the system under test (SUT) by testing for a set of behavioral competencies which an ADS must demonstrate. A popular approach to testing ADS is scenario-based testing where the ADS is presented with driving scenarios from real world (and synthetically generated) data and expected to meet defined safety criteria while navigating through the scenario. We present SAFR-AV, an end-to-end ADS testing platform to enable scenario-based ADS testing. Our work addresses key real-world challenges of building an efficient large scale data ingestion pipeline and search capability to identify scenarios of interest from real world data, creating digital twins of the real-world scenarios to enable Software-in-the-Loop (SIL) testing in ADS simulators and, identifying key scenario parameter distributions to enable optimization of scenario coverage. These along with other modules of SAFR-AV would allow the platform to provide ADS pre-certifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.