Breast cancer is a global cause for concern owing to its high incidence around the world. The alarming increase in breast cancer cases emphasizes the management of disease at multiple levels. The management should start from the beginning that includes stringent cancer screening or cancer registry to effective diagnostic and treatment strategies. Breast cancer is highly heterogeneous at morphology as well as molecular levels and needs different therapeutic regimens based on the molecular subtype. Breast cancer patients with respective subtype have different clinical outcome prognoses. Breast cancer heterogeneity emphasizes the advanced molecular testing that will help on-time diagnosis and improved survival. Emerging fields such as liquid biopsy and artificial intelligence would help to under the complexity of breast cancer disease and decide the therapeutic regimen that helps in breast cancer management. In this review, we have discussed various risk factors and advanced technology available for breast cancer diagnosis to combat the worst breast cancer status and areas that need to be focused for the better management of breast cancer.
The necessity of image fusion is growing in recently in image processing applications due to the tremendous amount of acquisition systems. Fusion of images is defined as an alignment of noteworthy Information from diverse sensors using various mathematical models to generate a single compound image. The fusion of images is used for integrating the complementary multi-temporal, multi-view and multi-sensor Information into a single image with improved image quality and by keeping the integrity of important features. It is considered as a vital pre-processing phase for several applications such as robot vision, aerial, satellite imaging, medical imaging, and a robot or vehicle guidance. In this paper, various state-of-art image fusion methods of diverse levels with their pros and cons, various spatial and transform based method with quality metrics and their applications in different domains have been discussed. Finally, this review has concluded various future directions for different applications of image fusion.
An accurate contour estimation plays a significant role in classification and estimation of shape, size, and position of thyroid nodule. This helps to reduce the number of false positives, improves the accurate detection and efficient diagnosis of thyroid nodules. This paper introduces an automated delineation method that integrates spatial information with neutrosophic clustering and level-sets for accurate and effective segmentation of thyroid nodules in ultrasound images. The proposed delineation method named as Spatial Neutrosophic Distance Regularized Level Set (SNDRLS) is based on Neutrosophic L-Means (NLM) clustering which incorporates spatial information for Level Set evolution. The SNDRLS takes rough estimation of region of interest (ROI) as input provided by Spatial NLM (SNLM) clustering for precise delineation of one or more nodules. The performance of the proposed method is compared with level set, NLM clustering, Active Contour Without Edges (ACWE), Fuzzy C-Means (FCM) clustering and Neutrosophic based Watershed segmentation methods using the same image dataset. To validate the SNDRLS method, the manual demarcations from three expert radiologists are employed as ground truth. The SNDRLS yields the closest boundaries to the ground truth compared to other methods as revealed by six assessment measures (true positive rate is 95.45 ± 3.5%, false positive rate is 7.32 ± 5.3% and overlap is 93.15 ± 5. 2%, mean absolute distance is 1.8 ± 1.4 pixels, Hausdorff distance is 0.7 ± 0.4 pixels and Dice metric is 94.25 ± 4.6%). The experimental results show that the SNDRLS is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. The proposed method achieves the automated nodule boundary even for low-contrast, blurred, and noisy thyroid ultrasound images without any human intervention. Additionally, the SNDRLS has the ability to determine the controlling parameters adaptively from SNLM clustering.
Thyroid nodule is one of the endocrine problem caused due to abnormal growth of cells. This survival rate can be enhanced by earlier detection of nodules. Thus, the accurate detection of nodule is of utmost importance in providing effective diagnosis to increase the survival rate. However, accuracy of nodule detection from ultrasound images is suffered due to speckle noise. It considerably deteriorates the image quality and makes the differentiation of fine details quite difficult. Most of the detection systems for the thyroid nodules are semi-automated entailing manual intervention to draw rough outline of the nodule at some level or require manual segmentation in training or testing phases that increase the inaccuracies and evaluation time. To handle this, a fully Computer-Aided Detection system is presented for speckle reduction and segmentation of nodules from thyroid ultrasound images. The proposed system has three components: speckle reduction to reduce speckle noise and preserve the diagnostic features of ultrasound image, automatic generation of Region of interest (ROI) that identifies suspicious regions and fully automatic segmentation of nodule in processed ROI image. The proposed segmentation method outperformed other methods by gaining high True Positive (TP) value (95.92 ± 3.70%), False Positive (FP) value (7.04 ± 4.21%), Dice Coefficient (DC) value (93.88 ± 2.59%), Overlap Metric (OM) (91.18 ± 7.04 pixels) and Hausdroff Distance (HD) (0.52 ± 0.20 pixels). This system can facilitate the endocrinologists by providing second opinion to improve diagnosis of nodules as benign or malignant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.