Node positioning or localization is a critical requisite for numerous position-based applications of wireless sensor network (WSN). Localization using the unmanned aerial vehicle (UAV) is preferred over localization using fixed terrestrial anchor node (FTAN) because of low implementation complexity and high accuracy. The conventional multilateration technique estimates the position of the unknown node (UN) based on the distance from the anchor node (AN) to UN that is obtained from the received signal strength (RSS) measurement. However, distortions in the propagation medium may yield incorrect distance measurement and as a result, the accuracy of RSS-multilateration is limited. Though the optimization based localization schemes are considered to be a better alternative, the performance of these schemes is not satisfactory if the distortions are non-linear. In such situations, the neural network (NN) architecture such as extreme learning machine (ELM) can be a better choice as it is a highly non-linear classifier. The ELM is even superior over its counterpart NN classifiers like multilayer perceptron (MLP) and radial basis function (RBF) due to its fast and strong learning ability. Thus, this paper provides a comparative review of various soft computing based localization techniques using both FTAN and aerial ANs for better acceptability.INDEX TERMS extreme learning machine, localization, unmanned aerial vehicles, wireless sensor networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.