Here we report a novel nitridation technique for transforming niobium into hexagonal Nb 2 N which appears to be superconducting below 1K. The nitridation is achieved by high temperature annealing of Nb films grown on Si 3 N 4 /Si (100) substrate under high vacuum. The structural characterization directs the formation of a majority Nb 2 N phase while the morphology shows granular nature of the films. The temperature dependent resistance measurements reveal a wide metal-to-superconductor transition featuring two distinct transition regions. The region close to the normal state varies strongly with the film thickness, whereas, the second region in the vicinity of the superconducting state remains almost unaltered but exhibiting resistive tailing. The current-voltage characteristics also display wide transition embedded with intermediate resistive states originated by phase slip lines. The transition width in current and the number of resistive steps depend on film thickness and they both increase with decrease in thickness. The broadening in transition width is explained by progressive establishment of superconductivity through proximity coupled superconducting nano-grains while finite size effects and quantum fluctuation may lead to the resistive tailing. Finally, by comparing with Nb control samples, we emphasize that Nb 2 N offers unconventional superconductivity with promises in the field of phase slip based device applications.
We report transport studies through Nb-based superconducting meander wires fabricated by focused ion beam milling technique. The effect of meandering on quantum transport has been probed experimentally by a direct comparison with the pristine thin-film device before meandering. The normal metal (NM) to superconductor (SC) phase transition becomes a wide and multi-step transition by meandering. Below the transition temperature (T c), the resistance-versus-temperature measurements reveal resistive tailing which is explained by the thermally activated phase slip (TAPS) mechanism. The TAPS fit indicates a selective region of the meander to be responsible for the resistive tailing. Besides, the phase slip (PS) mechanism in the meander is evident in its current–voltage characteristics that feature the stair-case type intermediate resistive steps (IRSs) during the SC–NM transition. The modulation of the IRSs is investigated with respect to temperature and external magnetic field. It is observed that the PS events are facilitated by magnetic fields up to about 250 mT. Further, the critical current varies strongly on the temperature and magnetic field for T < 0.5 T c and H ⩽ 100 mT where it fluctuates in an oscillatory manner. Finally, Nb based meander structures can be promising candidates for future PS based studies and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.