Biofouling negatively impacts water treatment performance of membranes by reducing water permeability, increasing energy consumption, and shortening the lifetime of the membranes. In this study, we integrated the bactericidal property of silver nanoparticles (AgNPs) with hydrophilicity of hydrogels to modify membranes that not only reduce adhesion, but also deactivate the adhered bacteria. Two approaches for AgNP synthesis were adoptedin situ synthesis and encapsulation in single step, and immobilization in multistep. Formation of AgNPs was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) studies. Compared to the pristine membrane, AgNP/hydrogel-modified membranes displayed no adverse effect in water flux under gravitational flow condition. The AgNP/hydrogel-modified membranes also exhibited better antibacterial properties (inhibition of adhesion and growth of Escherichia coli) as demonstrated by the bacterial growth, inhibition zone, and coculture (with the membranes) studies. The improvements could be attributed to the synergistic effect of hydrophilic hydrogel networks and the presence of bactericidal AgNPs. In addition, comparison of the antibacterial studies revealed the superiority of the encapsulated AgNPs over the immobilized AgNPs. This could be attributed to the efficient release of the former over the latter. To the best of our knowledge, this is the first study that demonstrates the enhancement of antibacterial properties of membrane via in situ synthesis and encapsulation of AgNPs within hydrogel matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.