BackgroundThe ongoing economic and political crisis in Venezuela has resulted in a collapse of the healthcare system and the re-emergence of previously controlled or eliminated infectious diseases. There has also been an exodus of Venezuelan international migrants in response to the crisis. We sought to describe the infectious disease risks faced by Venezuelan nationals and assess the international mobility patterns of the migrant population.MethodsWe synthesized data on recent infectious disease events in Venezuela and among international migrants from Venezuela, as well as on current country of residence among the migrant population. We used passenger-level itinerary data from the International Air Transport Association to evaluate trends in outbound air travel from Venezuela over time. We used two parameter-free mobility models, the radiation and impedance models, to estimate the expected population flows from Venezuelan cities to other major Latin American and Caribbean cities.ResultsOutbreaks of measles, diphtheria and malaria have been reported across Venezuela and other diseases, such as HIV and tuberculosis, are resurgent. Changes in migration in response to the crisis are apparent, with an increase in Venezuelan nationals living abroad, despite an overall decline in the number of outbound air passengers. The two models predicted different mobility patterns, but both highlighted the importance of Colombian cities as destinations for migrants and also showed that some migrants are expected to travel large distances. Despite the large distances that migrants may travel internationally, outbreaks associated with Venezuelan migrants have occurred primarily in countries proximate to Venezuela.ConclusionsUnderstanding where international migrants are relocating is critical, given the association between human mobility and the spread of infectious diseases. In data-limited situations, simple models can be useful for providing insights into population mobility and may help identify areas likely to receive a large number of migrants.
publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Article Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning EpidemicGraphical Abstract Highlights d Travel surveillance and genomics uncovered hidden Zika transmission d An unreported and 1-year delayed Zika outbreak was detected in Cuba d Mosquito control may delay, not prevent, Zika virus establishment d A surveillance framework to detect hidden outbreaks was created
BackgroundZika virus (ZIKV) emerged in Latin America and the Caribbean (LAC) region in 2013, with serious implications for population health in the region. In 2016, the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern following a cluster of associated neurological disorders and neonatal malformations. In 2017, Zika cases declined, but future incidence in LAC remains uncertain due to gaps in our understanding, considerable variation in surveillance and the lack of a comprehensive collation of data from affected countries.MethodsOur analysis combines information on confirmed and suspected Zika cases across LAC countries and a spatio-temporal dynamic transmission model for ZIKV infection to determine key transmission parameters and projected incidence in 90 major cities within 35 countries. Seasonality was determined by spatio-temporal estimates of Aedes aegypti vectorial capacity. We used country and state-level data from 2015 to mid-2017 to infer key model parameters, country-specific disease reporting rates, and the 2018 projected incidence. A 10-fold cross-validation approach was used to validate parameter estimates to out-of-sample epidemic trajectories.ResultsThere was limited transmission in 2015, but in 2016 and 2017 there was sufficient opportunity for wide-spread ZIKV transmission in most cities, resulting in the depletion of susceptible individuals. We predict that the highest number of cases in 2018 would present within some Brazilian States (Sao Paulo and Rio de Janeiro), Colombia and French Guiana, but the estimated number of cases were no more than a few hundred. Model estimates of the timing of the peak in incidence were correlated (p < 0.05) with the reported peak in incidence. The reporting rate varied across countries, with lower reporting rates for those with only confirmed cases compared to those who reported both confirmed and suspected cases.ConclusionsThe findings suggest that the ZIKV epidemic is by and large over within LAC, with incidence projected to be low in most cities in 2018. Local low levels of transmission are probable, but the estimated rate of infection suggests that most cities have a population with high levels of herd immunity.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1158-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.