Abstract. We study the polyhedra of splittable and unsplittable single arc-set relaxations of multicommodity flow capacitated network design problems. We investigate the optimization problems over these sets and the separation and lifting problems of valid inequalities for them. In particular, we give a linear-time separation algorithm for the residual capacity inequalities [19] and show that the separation problem of c-strong inequalities [7] is N P-hard, but can be solved over the subspace of fractional variables only. We introduce two classes of inequalities for the unsplittable flow problems. We present a summary of computational experiments with a branch-and-cut algorithm for multicommodity flow capacitated network design problems to test the effectiveness of the results presented here empirically.
Abstract. This paper describes the SODA scheduler for System S , a highly scalable distributed stream processing system. Unlike traditional batch applications, streaming applications are open-ended. The system cannot typically delay the processing of the data. The scheduler must be able to shift resource allocation dynamically in response to changes to resource availability, job arrivals and departures, incoming data rates and so on. The design assumptions of System S , in particular, pose additional scheduling challenges. SODA must deal with a highly complex optimization problem, which must be solved in real-time while maintaining scalability. SODA relies on a careful problem decomposition, and intelligent use of both heuristic and exact algorithms. We describe the design and functionality of SODA, outline the mathematical components, and describe experiments to show the performance of the scheduler.
With widespread adoption of electronic health records, there is an increased emphasis for predictive models that can effectively deal with clinical time-series data. Powered by Recurrent Neural Network (RNN) architectures with Long Short-Term Memory (LSTM) units, deep neural networks have achieved state-of-the-art results in several clinical prediction tasks. Despite the success of RNN, its sequential nature prohibits parallelized computing, thus making it inefficient particularly when processing long sequences. Recently, architectures which are based solely on attention mechanisms have shown remarkable success in transduction tasks in NLP, while being computationally superior. In this paper, for the first time, we utilize attention models for clinical time-series modeling, thereby dispensing recurrence entirely. We develop the SAnD (Simply Attend and Diagnose) architecture, which employs a masked, self-attention mechanism, and uses positional encoding and dense interpolation strategies for incorporating temporal order. Furthermore, we develop a multi-task variant of SAnD to jointly infer models with multiple diagnosis tasks. Using the recent MIMIC-III benchmark datasets, we demonstrate that the proposed approach achieves state-of-the-art performance in all tasks, outperforming LSTM models and classical baselines with hand-engineered features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.