A high resolution (3-8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.
Abstract. Noise comprises those sounds occurring around us that are not part of the environment under consideration. Noise is also a type of pollution and impacts on our health and wellness. The prevalence of noise is increasing in magnitude and severity because of growing population and urbanization. Noise pollution leads to many chronic and socially significant impacts. This study analyzes the level of noise at different points in SRM University. As the University encompasses a hospital also, it is more important to identify the sources of high noise levels and control them. As per Indian standards the desirable noise pollution for educational institutions and hospitals in daytime is 50 dbA. Noise levels were measured with a sound level meter at 19 points within the campus at three different timings (8-10 am, 12-2 pm, and 3-5 pm) over two cycles of measurements. The preliminary results show higher noise levels during morning and evening. Noise during Cycle 2 (latter half of semester) was 20% more compared to that of Cycle 1 (beginning of semester).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.