BackgroundPancreatic cancer is one of the most aggressive human malignancies, with a very poor prognosis. To evaluate the effect of angiotensin II (Ang II) type 2 receptor (AT2) expression in the host's body on the growth of pancreatic carcinoma, we have investigated the growth of mouse pancreatic ductal carcinoma grafts in syngeneic wild type and AT2 receptor-deficient (AT2-KO) mice.MethodsThe role of AT2 receptor-signaling in stromal cells on the growth of murine pancreatic carcinoma cells (PAN02) was studied using various in vitro and in vivo assays. In vivo cell proliferation, apoptosis, and vasculature in tumors were monitored by Ki-67 immunostaining, TUNEL assay, and von Willebrand factor immunostaining, respectively. In the co-culture study, cell proliferation was measured by MTT cell viability assay. All the data were analyzed using t-test and data were treated as significant when p < 0.05.ResultsOur results show that the growth of subcutaneously transplanted syngeneic xenografts of PAN02 cells, mouse pancreatic ductal carcinoma cells derived from the C57/BL6 strain, was significantly faster in AT2-KO mice compared to control wild type mice. Immunohistochemical analysis of tumor tissue revealed significantly more Ki-67 positive cells in xenografts grown in AT2-KO mice than in wild type mice. The index of apoptosis is slightly higher in wild type mice than in AT2-KO mice as evaluated by TUNEL assay. Tumor vasculature number was significantly higher in AT2-KO mice than in wild type mice. In vitro co-culture studies revealed that the growth of PAN02 cells was significantly decreased when grown with AT2 receptor gene transfected wild type and AT2-KO mouse-derived fibroblasts. Faster tumor growth in AT2-KO mice may be associated with higher VEGF production in stromal cells.ConclusionsThese results suggest that Ang II regulates the growth of pancreatic carcinoma cells through modulating functions of host stromal cells; Moreover, Ang II AT2 receptor signaling is a negative regulator in the growth of pancreatic carcinoma cells. These findings indicate that the AT2 receptor in stromal fibroblasts is a potentially important target for chemotherapy for pancreatic cancer.
Transfection efficiency and toxicity concerns remain a challenge for gene therapy. Cell penetrating peptides (CPPs) have been broadly investigated to improve the transfection of genetic material (e.g., pDNA and siRNA). Here, a synthetic CPP (polylysine, K9 peptide) was complexed with angiotensin II type 2 receptor (AT2R) plasmid DNA (pAT2R) and complexes were condensed using calcium chloride. The resulting complexes were small (~150 nm) and showed high levels of gene expression in vitro and in vivo. This simple non-viral formulation approach showed negligible cytotoxicity in four different human cell lines (cervix, breast, kidney, and lung cell lines) and one mouse cell line (a lung cancer cell line). Additionally, this K9-pDNA-Ca2+ complex demonstrated cancer targeted gene delivery when administered via intravenous (IV) injection or intratracheal (IT) spray. The transfection efficiency was evaluated in Lewis lung carcinoma (LLC) cell lines cultured in vitro and in orthotopic cancer grafts in syngeneic mice. Immunohistochemical analysis confirmed that the complex effectively delivered pAT2R to the cancer cells, where it was expressed mainly in cancer cells along with bronchial epithelial cells. A single administration of these complexes markedly attenuated lung cancer growth offering preclinical proof of concept for a novel non-viral gene delivery method exhibiting effective lung tumor gene therapy via either IV or IT administration.
Purpose To determine aerosol administration capability and therapeutic efficacy of the new formulation of hyaluronan cisplatin conjugates, HylaPlat™ (HA-Pt), for lung cancer treatment. Methods In vitro formulation stability test, 2D and 3D spheroid cell culture and in vivo efficacy studies using mouse orthotopic allograft models were conducted. Results The HA-Pt effectively attenuated cell growth in 2D and 3D cultures with IC50 of 2.62 and 5.36 μM, respectively, which were comparable to those with unconjugated control cisplatin-dependent growth inhibition (IC50 1.64 and 4.63 μM, respectively). A single dose of either 7.5 or 15 mg/kg HA-Pt (cisplatin equivalent) by intratracheal aerosol spray seven days after Lewis lung carcinoma (LLC) cell inoculation markedly inhibited growth of LLC allografts in mouse lungs and resulted in a 90 or 94% reduction of tumor nodule numbers, respectively, as compared to those from the PBS control. Cancer stem cells and cisplatin resistant cells marker, CD44 expression decreased in the tumor nodules of the HA-Pt but not in those of cisplatin treated groups. Conclusions The current study suggests that an intratracheal aerosol administration of the HA-Pt nanoparticles offers an effective strategy for lung cancer treatment and this treatment may induce only limited cisplatin resistance.
Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.
The newly purified extracellular polysaccharides (exopolysaccharides) from Parachlorella kessleri (PCEPS) were evaluated on their antitumor and immunomodulatory effects in cell culture and mouse colon carcinoma peritoneal dissemination model. In two-dimensional cell culture, the PCEPS treatment inhibited cell growth of both murine and human colon carcinoma cells in a dose- and time-dependent manner. In contrast, the growth of mouse splenocytes (SPLs) and bone marrow cells (BMCs) were stimulated by the treatment with PCEPS. The treatment with PCEPS also increased specific subpopulations of the cells in BMCs: antigen presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophage) and CD8+ cytotoxic T cells. In three-dimensional spheroid culture, spheroid growth of CT26 cells co-cultured with HL-60 human neutrophilic promyeloblasts and Jurkat cells (human lymphoblasts), but not THP-1 human monocyte/macrophage was significantly attenuated by PCEPS treatment. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of PCEPS (10 mg/kg, twice per week) significantly attenuated the growth of CT26 colon carcinoma in syngeneic mice. The present study suggests that PCEPS inhibits colon carcinoma growth via direct cell growth inhibition and a stimulation of the host antitumor immune responses. Taken together, the current study suggests that exopolysaccharides derived from Parachlorella kessleri contain significant bioactive materials that inhibit colon carcinoma growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.