SummaryThe adipocyte-derived hormone leptin is an important regulator of appetite and energy expenditure and is now appreciated for its ability to control innate and adaptive immune responses. We have reported previously that the leptindeficient ob/ob mouse exhibited increased susceptibility to the Gram-negative bacterium Klebsiella pneumoniae. In this report we assessed the impact of chronic leptin deficiency, using ob/ob mice, on pneumococcal pneumonia and examined whether restoring circulating leptin to physiological levels in vivo could improve host defences against this pathogen. We observed that ob/ob mice, compared with wild-type (WT) animals, exhibited enhanced lethality and reduced pulmonary bacterial clearance following Streptococcus pneumoniae challenge. These impairments in host defence in ob/ob mice were associated with elevated levels of lung tumour necrosis factor (TNF)-a, macrophage inflammatory peptide (MIP)-2 [correction added after online publication 28 September 2007: definition of MIP corrected], prostaglandin E2 (PGE2), lung neutrophil polymorphonuclear leukocyte (PMN) counts, defective alveolar macrophage (AM) phagocytosis and PMN killing of S. pneumoniae in vitro.Exogenous leptin administration to ob/ob mice in vivo improved survival and greatly improved pulmonary bacterial clearance, reduced bacteraemia, reconstituted AM phagocytosis and PMN H2O2 production and killing of S. pneumoniae in vitro. Our results demonstrate, for the first time, that leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Further investigations are warranted to determine whether there is a potential therapeutic role for this adipokine in immunocompromised patients.
Cigarette smoke exposure increases the risk of pulmonary and invasive infections caused by Streptococcus pneumoniae, the most commonly isolated organism from patients with community-acquired pneumonia. Despite this association, the mechanisms by which cigarette smoke exposure diminishes host defense against S. pneumoniae infections are poorly understood. In this study, we compared the responses of BALB/c mice following an intratracheal challenge with S. pneumoniae after 5 weeks of exposure to room air or cigarette smoke in a whole-body exposure chamber in vivo and the effects of cigarette smoke on alveolar macrophage phagocytosis of S. pneumoniae in vitro. Bacterial burdens in cigarette smoke-exposed mice were increased at 24 and 48 h postinfection, and this was accompanied by a more pronounced clinical appearance of illness, hypothermia, and increased lung homogenate cytokines interleukin-1 (IL-1), IL-6, IL-10, and tumor necrosis factor alpha (TNF-␣). We also found greater numbers of neutrophils in bronchoalveolar lavage fluid recovered from cigarette smoke-exposed mice following a challenge with heat-killed S. pneumoniae. Interestingly, overnight culture of alveolar macrophages with 1% cigarette smoke extract, a level that did not affect alveolar macrophage viability, reduced complement-mediated phagocytosis of S. pneumoniae, while the ingestion of unopsonized bacteria or IgG-coated microspheres was not affected. This murine model provides robust additional support to the hypothesis that cigarette smoke exposure increases the risk of pneumococcal pneumonia and defines a novel cellular mechanism to help explain this immunosuppressive effect.
Leukotriene B 4 (LTB 4 ) is a potent lipid mediator of inflammation formed by the 5-lipoxygenase (5-LO)-catalyzed oxidation of arachidonic acid. We have previously shown that (i) LTB 4 is generated during infection, (ii) its biosynthesis is essential for optimal antimicrobial host defense, (iii) LT deficiency is associated with clinical states of immunocompromise, and (iv) exogenous LTB 4 augments antimicrobial functions in phagocytes. Here, we sought to determine whether the administration of LTB 4 has therapeutic potential in a mouse model of pneumonia. Wild-type and 5-LO knockout mice were challenged with Streptococcus pneumoniae via the intranasal route, and bacterial burdens, leukocyte counts, and cytokine levels were determined. LTB 4 was administered via the intraperitoneal, intravenous, and intranasal routes prior to pneumococcal infection and by aerosol 24 h following infection. Leukocytes recovered from mice given S. pneumoniae and treated with aerosolized LTB 4 were evaluated for expression levels of the p47phox subunit of NADPH oxidase. Intrapulmonary but not systemic pretreatment with LTB 4 significantly reduced the lung S. pneumoniae burden in wild-type mice. Aerosolized LTB 4 was effective at improving lung bacterial clearance when administered postinoculation in animals with established infection and exhibited greater potency in 5-LO knockout animals, which also exhibited greater baseline susceptibility. Augmented bacterial clearance in response to LTB 4 was associated with enhanced monocyte recruitment and leukocyte expression of p47phox. The results of the current study in an animal model serve as a proof of concept for the potential utility of treatment with aerosolized LTB 4 as an immunostimulatory strategy in patients with bacterial pneumonia.
Prostaglandins (PGs) are potent lipid mediators that are produced during infections and whose synthesis and signaling networks present potential pharmacologic targets for immunomodulation. PGE2 acts through the ligation of 4 distinct G protein coupled receptors, E-prostanoid (EP) 1–4. Previous in vitro and in vivo studies demonstrated that the activation of the Gαs-coupled EP2 and EP4 receptors suppresses inflammatory responses to microbial pathogens through cAMP-dependent signaling cascades. While it is speculated that PGE2 signaling via the Gαi-coupled EP3 receptor might counteract EP2/EP4 immunosuppression in the context of bacterial infection (or severe inflammation), this has not previously been tested in vivo. To address this, we infected wild type (WT, EP3+/+) and EP3−/− mice with the important respiratory pathogen S. pneumoniae or injected mice intraperitoneally with lipopolysaccharide (LPS). Unexpectedly, we observed that EP3−/− mice were protected from mortality after infection or LPS. The enhanced survival observed in the infected EP3−/− mice correlated with enhanced pulmonary clearance of bacteria; reduced accumulation of lung neutrophils; lower numbers of circulating blood leukocytes; and an impaired febrile response to infection. In vitro studies revealed improved alveolar macrophage phagocytic and bactericidal capacities in EP3−/− cells that were associated with an increased capacity to generate nitric oxide in response to immune stimulation. Our studies underscore the complex nature of PGE2 immunomodulation in the context of host-microbial interactions in the lung. Pharmacological targeting of the PGE2-EP3 axis represents a novel area warranting greater investigative interest in the prevention and/or treatment of infectious diseases.
The adipocyte-derived hormone, leptin, regulates energy homeostasis and the innate immune response. We previously reported that leptin plays a protective role in bacterial pneumonia, but the mechanisms by which leptin regulates host defense remain poorly understood. Leptin binding to its receptor, LepRb, activates multiple intracellular signaling pathways, including ERK1/2, STAT5, and STAT3. In this report, we compared the responses of wild type (WT) and s/s mice, which possess a mutant LepRb that prevents leptin induced STAT3 activation, to determine the role of this signaling pathway in pneumococcal pneumonia. Compared with WT animals, s/s mice exhibited greater survival and enhanced pulmonary bacterial clearance following an intratracheal challenge with Streptococcus pneumoniae. We also observed enhanced phagocytosis and killing of S.pneumoniae in vitro in alveolar macrophages (AM) obtained from s/s mice. Interestingly, the improved host defense and AM antibacterial effector functions in s/s mice were associated with increased cysteinyl-leukotriene production in vivo and in AMs in vitro. Augmentation of phagocytosis in AMs from s/s mice could be blocked using a pharmacologic cysteinyl-LT receptor antagonist. Phosphorylation of ERK1/2 and cPLA2α, known to enhance the release of arachidonic acid for subsequent conversion to LTs, was also increased in AMs from s/s mice stimulated with S.pneumoniae in vitro. These data indicate that ablation of LepRb-mediated STAT3 signaling and the associated augmentation of ERK1/2, cPLA2α, and cysteinyl-LT synthesis confers resistance to s/s mice during pneumococcal pneumonia. These data provide novel insights into the intracellular signaling events by which leptin contributes to host defense against bacterial pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.