Potyviruses (family Potyviridae, genus Potyvirus) are the result of an initial radiation event that occurred 6,600 years ago. The genus currently consists of 167 species that infect monocots or dicots, including domesticated and wild plants. Potyviruses are transmitted in a non-persistent way by more than 200 species of aphids. As indicated by their wide host range, worldwide distribution, and diversity of their vectors, potyviruses have an outstanding capacity to adapt to new hosts and environments. However, factors that confer adaptability are poorly understood. Viral RNA-dependent RNA polymerases introduce nucleotide substitutions that generate genetic diversity. We hypothesized that selection imposed by hosts and vectors creates a footprint in areas of the genome involved in host adaptation. Here, we profiled genomic and polyprotein variation in all species in the genus Potyvirus. Results showed that the potyviral genome is under strong negative selection. Accordingly, the genome and polyprotein sequence are remarkably stable. However, nucleotide and amino acid substitutions across the potyviral genome are not randomly distributed and are not determined by codon usage. Instead, substitutions preferentially accumulate in hypervariable areas at homologous locations across potyviruses. At a frequency that is higher than that of the rest of the genome, hypervariable areas accumulate non-synonymous nucleotide substitutions and sites under positive selection. Our results show, for the first time, that there is correlation between host range and the frequency of sites under positive selection. Hypervariable areas map to the N terminal part of protein P1, N and C terminal parts of helper component proteinase (HC-Pro), the C terminal part of protein P3, VPg, the C terminal part of NIb (RNA-dependent RNA polymerase), and the N terminal part of the coat protein (CP). Additionally, a hypervariable area at the NIb-CP junction showed that there is variability in the sequence of the NIa protease cleavage sites. Structural alignment showed that the hypervariable area in the CP maps to the N terminal flexible loop and includes the motif required for aphid transmission. Collectively, results described here show that potyviruses contain fixed hypervariable areas in key parts of the genome which provide mutational robustness and are potentially involved in host adaptation.
BackgroundMaize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA.MethodsWe used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties.ResultsComplete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus.ConclusionOur results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.Electronic supplementary materialThe online version of this article (10.1186/s12985-018-0999-2) contains supplementary material, which is available to authorized users.
BackgroundGenome-wide gene expression profiling and detailed physiological investigation were used for understanding the molecular mechanism and physiological response of Gossypium herbaceum, which governs the adaptability of plants in drought conditions. Recently, microarray-based gene expression analysis is commonly used to decipher genes and genetic networks controlling the traits of interest. However, the results of such an analysis are often plagued due to a limited number of genes (probe sets) on microarrays. On the other hand, pyrosequencing of a transcriptome has the potential to detect rare as well as a large number of transcripts in the samples quantitatively. We used Affymetrix microarray as well as Roche's GS-FLX transcriptome sequencing for a comparative analysis of cotton transcriptome in leaf tissues under drought conditions.ResultsFourteen accessions of Gossypium herbaceum were subjected to mannitol stress for preliminary screening; two accessions, namely Vagad and RAHS-14, were selected as being the most tolerant and most sensitive to osmotic stress, respectively. Affymetrix cotton arrays containing 24,045 probe sets and Roche's GS-FLX transcriptome sequencing of leaf tissue were used to analyze the gene expression profiling of Vagad and RAHS-14 under drought conditions. The analysis of physiological measurements and gene expression profiling showed that Vagad has the inherent ability to sense drought at a much earlier stage and to respond to it in a much more efficient manner than does RAHS-14. Gene Ontology (GO) studies showed that the phenyl propanoid pathway, pigment biosynthesis, polyketide biosynthesis, and other secondary metabolite pathways were enriched in Vagad under control and drought conditions as compared with RAHS-14. Similarly, GO analysis of transcriptome sequencing showed that the GO terms responses to various abiotic stresses were significantly higher in Vagad. Among the classes of transcription factors (TFs) uniquely expressed in both accessions, RAHS-14 showed the expression of ERF and WRKY families. The unique expression of ERFs in response to drought conditions reveals that RAHS-14 responds to drought by inducing senescence. This was further supported by transcriptome analysis which revealed that RAHS-14 responds to drought by inducing many transcripts related to senescence and cell death.ConclusionThe comparative genome-wide gene expression profiling study of two accessions of G.herbaceum under drought stress deciphers the differential patterns of gene expression, including TFs and physiologically relevant processes. Our results indicate that drought tolerance observed in Vagad is not because of a single molecular reason but is rather due to several unique mechanisms which Vagad has developed as an adaptation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.