Microsecond I/O will make data serialization a major bottleneck for datacenter applications. Serialization is fundamentally about data movement: serialization libraries coalesce and flatten in-memory data structures into a single transmittable buffer. CPU-based serialization approaches will hit a performance limit due to data movement overheads and be unable to keep up with modern networks.We observe that widely deployed NICs possess scattergather capabilities that can be re-purposed to accelerate serialization's core task of coalescing and flattening in-memory data structures. It is possible to build a completely zero-copy, zero-allocation serialization library with commodity NICs. Doing so introduces many research challenges, including using the hardware capabilities efficiently for a wide variety of non-uniform data structures, making application memory available for zero-copy I/O, and ensuring memory safety.
In this paper we explore the viability of path tracing massive scenes using a "supercomputer" constructed on-the-fly from thousands of small, serverless cloud computing nodes. We present R2E2 (Really Elastic Ray Engine) a scene decomposition-based parallel renderer that rapidly acquires thousands of cloud CPU cores, loads scene geometry from a pre-built scene BVH into the aggregate memory of these nodes in parallel, and performs full path traced global illumination using an inter-node messaging service designed for communicating ray data. To balance ray tracing work across many nodes, R2E2 adopts a service-oriented design that statically replicates geometry and texture data from frequently traversed scene regions onto multiple nodes based on estimates of load, and dynamically assigns ray tracing work to lightly loaded nodes holding the required data. We port pbrt's ray-scene intersection components to the R2E2 architecture, and demonstrate that scenes with up to a terabyte of geometry and texture data (where as little as 1/250th of the scene can fit on any one node) can be path traced at 4K resolution, in tens of seconds using thousands of tiny serverless nodes on the AWS Lambda platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.