Early blight, caused by the fungus Alternaria solani, is a devastating foliar disease of tomatoes, causes massive yield loss each year worldwide. Molecular basis of the compatible host–pathogen interaction was elusive. We adopted next generation sequencing approach to decipher miRNAs and mRNAs that are differentially expressed during Alternaria-stress in tomato. Some of the interesting findings were also validated by alternative techniques. Our analysis revealed 181 known-miRNAs, belonging to 121 miRNA families, of which 67 miRNAs showed at least 2-fold change in expression level with the majority being downregulated. Concomitantly, 5,450 mRNAs were significantly regulated in the same diseased tissues. Differentially expressed genes were most significantly associated with response to stimulus process, photosynthesis, biosynthesis of secondary metabolites, plant–pathogen interaction and plant hormone signal transduction pathways. GO term enrichment-based categorization of gene-functions further supported this observation, as terms related to pathogen perception, disease signal transduction, cellular metabolic processes including oxidoreductase and kinase activity were over represented. In addition, we have discovered 102 miRNA–mRNA pairs which were regulated antagonistically, and careful study of the targeted mRNAs depicted that multiple transcription factors, nucleotide-binding site leucine-rich repeats, receptor-like proteins and enzymes related to cellular ROS management were profoundly affected. These studies have identified key regulators of Alternaria-stress response in tomato and the subset of genes that are likely to be post-transcriptionally silenced during the infection.
Besides their definite role in plant developmental processes miR167 also serve as mediator of stress response. Although differential expression of miR167 occurs during stresses, the regulatory-mechanism of biogenesis remained elusive. Therefore, using tomato as the model plant we have explored the mechanism of regulation of miR167a expression during stresses. Fungus or virus infections and exposure to cold stress raised the level of miR167a expression. Whereas, salt, drought and heat treatments resulted in the downregulation, indicating different stresses activated alternative mechanisms for miR167a regulation. Interestingly, the relative expression level of precursors in control versus temperature stressed plants differed from the pattern observed in the mature miR167a expression, suggesting that both transcriptional and processing regulation were important for biogenesis. The promoter-regulatory sequence of the major isoform MIR167a harbours several development and stress-related regulatory sites. Accordingly, promoter assays using transient transformation and transgenic tobacco plants proved stress-dependent regulation of the promoter. Further analyses corroborated the role of tomato DREB2A protein in the transcriptional regulation during temperature stress. Finally, in vitro assays established the importance of processing factors in cold-stress dependent efficient processing of MIR167a precursors. These data confirm distinct role of transcriptional and processing machinery in stress-influenced regulation of tomato miR167a biogenesis.
Invasion of human red blood cells (RBCs) by Plasmodium falciparum (Pf) merozoites relies on the interaction between two parasite proteins, apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2)1,2. Antibodies to AMA1 confer limited protection against P. falciparum in non-human primate malaria models3,4. However, clinical trials with recombinant AMA1 alone (apoAMA1) saw no protection, likely due to inadequate levels of functional antibodies5–8. Notably, immunization with AMA1 in its ligand bound conformation using RON2L, a 49 amino acid peptide from RON2, confers superior protection against P. falciparum malaria by enhancing the proportion of neutralizing antibodies9,10. A limitation of this approach, however, is that it requires the two vaccine components to form a complex in solution. To facilitate vaccine development, we engineered chimeric antigens by strategically replacing the AMA1 DII loop that is displaced upon ligand binding with RON2L. Structural characterization of the fusion chimera, Fusion-FD12 to 1.55 Å resolution showed that it closely mimics the binary receptor-ligand complex. Immunization studies showed that Fusion-FD12 immune sera neutralized parasites more efficiently than apoAMA1 immune sera despite having an overall lower anti-AMA1 titer, suggesting improvement in antibody quality. Furthermore, immunization with Fusion-FD12 enhanced antibodies targeting conserved epitopes on AMA1 resulting in greater neutralization of non-vaccine type parasites. Identifying epitopes of such cross-neutralizing antibodies will help in the development of an effective, strain-transcending malaria vaccine. Our fusion protein design is a robust vaccine platform that can be enhanced by incorporating polymorphisms in AMA1 to effectively neutralize all P. falciparum parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.