In this study, the authors propose an l 0-norm penalised shrinkage linear least mean squares (l 0-SH-LMS) algorithm and an l 0-norm penalised shrinkage widely linear least mean squares (l 0-SH-WL-LMS) algorithm for sparse system identification. The proposed algorithms exploit the priori and the posteriori errors to calculate the varying step-size, thus they can adapt to the time-varying channel. Meanwhile, in the cost function they introduce a penalty term that favours sparsity to enable the applicability for sparse condition. Moreover, the l 0-SH-WL-LMS algorithm also makes full use of the non-circular properties of the signals of interest to improve the tracking capability and estimation performance. Quantitative analysis of the convergence behaviour for the l 0-SH-WL-LMS algorithm verifies the capabilities of the proposed algorithms. Simulation results show that compared with the existing least mean squares-type algorithms, the proposed algorithms perform better in the sparse channels with a faster convergence rate and a lower steady-state error. When channel changes suddenly, a filter with the proposed algorithms can adapt to the variation of the channel quickly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.