DNA mismatch repair (MMR) proteins have been implicated in sensing and correcting DNA damage, and in governing cell cycle progression in the presence of structurally anomalous nucleotide lesions induced by different stresses in mammalian cells. Here, Arabidopsis seedlings were grown hydroponically on 0.5 × MS media containing cadmium (Cd) at 0-4.0 mg L for 5 d. Flow cytometry results indicated that Cd stress induced a G2/M cell cycle arrest both in MLH1-, MSH2-, MSH6-deficient, and in WT roots, associated with marked changes of G2/M regulatory genes, including ATM, ATR, SOG1, BRCA1, WEE1, CYCD4; 1, MAD2, CDKA;1, CYCB1; 2 and CYCB1; 1. However, the Cd-induced G2/M phase arrest was markedly diminished in the MSH2- and MSH6-deficient roots, while a lack of MLH1 had no effect on Cd-induced G2 phase arrest relative to that in the wild type roots under the corresponding Cd stress. Expression of the above G2/M regulatory genes was altered in MLH1, MSH2 and MSH6-deficient roots in response to Cd treatment. Furthermore, Cd elicited endoreplication in MSH2- and MSH6-deficient roots, but not in MLH1-deficient Arabidopsis roots. Results suggest that MSH2 and MSH6 may act as direct sensors of Cd-mediated DNA damage. Taken together, we conclude that MSH2 and MSH6, but not MLH1, components of the MMR system are involved in the G2 phase arrest and endoreplication induced by Cd stress in Arabidopsis roots.
Background Rose is one of most popular ornamental plants worldwide and is of high economic value and great cultural importance. However, cold damage restricts its planting application in cold areas. To elucidate the metabolic response of rose under low temperature stress, we conducted transcriptome and de novo analysis of Rosa xanthina f. spontanea. Results A total of 124,106 unigenes from 9 libraries were generated by de novo assembly, with N50 length was 1470 bp, under 4 °C and − 20 °C stress (23 °C was used as a control). Functional annotation and prediction analyses identified 55,084 unigenes, and 67.72% of these unigenes had significant similarity (BLAST, E ≤ 10− 5) to those in the public databases. A total of 3031 genes were upregulated and 3891 were downregulated at 4 °C compared with 23 °C, and 867 genes were upregulated and 1763 were downregulated at − 20 °C compared with 23 °C. A total of 468 common DEGs were detected under cold stress, and the matched DEGs were involved in three functional categories: biological process (58.45%), cellular component (11.27%) and molecular function (30.28%). Based on KEGG functional annotations, four pathways were significantly enriched: metabolic pathway, response to plant pathogen interaction (32 genes); starch and sucrose metabolism (21 genes); circadian rhythm plant (8 genes); and photosynthesis antenna proteins (7 genes). Conclusions Our study is the first to report the response to cold stress at the transcriptome level in R. xanthina f. spontanea. The results can help to elucidate the molecular mechanism of cold resistance in rose and provide new insights and candidate genes for genetically enhancing cold stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.