Infection of human cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics simulations that take advantage of the highly mobile membrane mimetic model to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas, each for 300 ns. In 73% of the simulations, the FP reaches a stable, membrane-bound configuration, in which the peptide deeply penetrated into the membrane. Clustering of the results reveals three major membrane-binding modes (binding modes 1-3), in which binding mode 1 populates over half of the data points. Taking into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, the significant depth of penetration of the whole peptide, and the dense population of the respective cluster, we propose that the most deeply inserted membrane-bound form (binding mode 1) represents more closely the biologically relevant form. Analysis of FP-lipid interactions shows the involvement of specific residues, previously described as the ''fusion-active core residues,'' in membrane binding. Taken together, the results shed light on a key step involved in SARS-CoV2 infection, with potential implications in designing novel inhibitors.
Infection of human cells by the SARS-CoV2 relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics (MD) simulations taking advantage of the Highly Mobile Membrane Mimetic (HMMM) model, to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level, and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas. In 60% of the simulations, the FP reaches a stable, membrane-bound configuration where the peptide deeply penetrated into the membrane. Clustering of the results reveals two major membrane binding modes, the helix-binding mode and the loop-binding mode. Taken into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, we propose that the helix-binding mode represents more closely the biologically relevant form. In the helix-binding mode, the helix is stabilized in an oblique angle with respect to the membrane with its N-terminus tilted towards the membrane core. Analysis of the FP-lipid interactions shows the involvement of specific residues of the helix in membrane binding previously described as the fusion active core residues. Taken together, the results shed light on a key step involved in SARS-CoV2 infection with potential implications in designing novel inhibitors.
Infection of human cells by the SARS-CoV2 relies on its binding to a specific receptor and subsequent fusion of the viral and the host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an extensive array of molecular dynamics (MD) simulations taking advantage of the Highly Mobile Membrane Mimetic (HMMM) model, to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing human cellular membranes at an atomic level, and to characterize its membrane-bound form. Six independent systems were generated by changing the initial positioning and orientation of the FP with regard to the membrane, and each system was simulated in five independent replicas. In 60% of the simulations, FPs reached a stably membranebound configuration where the peptide deeply penetrated into the membrane. Clustering of the results reveals two major membrane binding modes, the helix-binding mode and the loop-binding mode. Taken into account sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, we propose that the helix-binding mode is the biologically relevant form. In this binding mode, the helix is stabilized in an oblique angle with respect to the membrane with the N-terminus tilted towards the membrane core. Analysis of the FP-lipid interactions shows the involvement of the fusion active core residues of the helix in membrane binding. These results shed light on a key step involved in the process of viral infection by SARS-CoV2 with potential use in designing novel inhibitors.
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.