Time-reversal invariant topological insulator is widely recognized as one of the fundamental discoveries in condensed matter physics, for which the most fascinating hallmark is perhaps a spin-based topological protection, the absence of scattering of conduction electrons with certain spins on matter surface. Recently, it has created a paradigm shift for topological insulators, from electronics to photonics, phononics and mechanics as well, bringing about not only involved new physics but also potential applications in robust wave transport. Despite the growing interests in topologically protected acoustic wave transport, T-invariant acoustic topological insulator has not yet been achieved. Here we report experimental demonstration of anomalous Floquet topological insulator for sound: a strongly coupled metamaterial ring lattice that supports one-way propagation of pseudo-spin-dependent edge states under T-symmetry. We also demonstrate the formation of pseudo-spin-dependent interface states due to lattice dislocations and investigate the properties of pass band and band gap states.
Supercapacitors (SCs) have attracted widespread attention due to their short charging/discharging time, long cycle life, and good temperature characteristics. Electrolytes have been considered as a key factor affecting the performance of SCs. They largely determine the energy density based on their decomposition voltage and the power density from their ionic conductivity. In recent years, redox electrolytes obtained a growing interest due to an additional redox activity from electrolytes, which offers an increased charge storage capacity in SCs. This article summarizes the latest progress in the research of redox electrolytes, and focuses on their properties, mechanisms, and applications based on different solvent types available. It also proposes potential solutions for how to effectively increase the energy density of the SCs while maintaining their high power and long life.
Topological elastic metamaterials offer insight into classic motion law and open up opportunities in quantum and classic information processing. Theoretical modeling and numerical simulation of elastic topological states have been reported, whereas the experimental observation remains relatively unexplored. Here we present an experimental observation and numerical simulation of tunable topological states in soft elastic metamaterials. The on-demand reversible switch in topological phase has been achieved by changing filling ratio, tension, and/or compression of the elastic metamaterials. By combining two elastic metamaterials with distinct topological invariants, we further demonstrate the formation and dynamic tunability of topological interface states by mechanical deformation, and the manipulation of elastic wave propagation. Moreover, we provide a topological phase diagram of elastic metamaterials under deformation. Our approach to dynamically control interface states in soft materials paves the way to various phononic systems involving thermal management and soft robotics requiring better use of energy.
Topological phononic crystals (PCs) are periodic artificial structures which can support nontrivial acoustic topological bands, and their topological properties are linked to the existence of topological edge modes. Most previous studies focused on the topological edge modes in Bragg gaps which are induced by lattice scatterings. While local resonant gaps would be of great use in subwavelength control of acoustic waves, whether it is possible to achieve topological interface states in local resonant gaps is a question. In this article, we study the topological bands near local resonant gaps in a time-reversal symmetric acoustic systems and elaborate the evolution of band structure using a spring-mass model. Our acoustic structure can produce three band gaps in subwavelength region: one originates from local resonance of unit cell and the other two stem from band folding. It is found that the topological interface states can only exist in the band folding induced band gaps but never appear in the local resonant band gap. The numerical simulation perfectly agrees with theoretical results. Our study provides an approach of localizing the subwavelength acoustic wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.