Motivation Most RNA viruses lack strict proofreading during replication. Coupled with a high replication rate, some RNA viruses can form a virus population containing a group of genetically-related but different haplotypes. Characterizing the haplotype composition in a virus population is thus important to understand viruses’ evolution. Many attempts have been made to reconstruct viral haplotypes using next-generation sequencing (NGS) reads. However, the short length of NGS reads cannot cover distant single-nucleotide variants (SNVs), making it difficult to reconstruct complete or near-complete haplotypes. Given the fast developments of third-generation sequencing (TGS) technologies, a new opportunity has arisen for reconstructing full-length haplotypes with long reads. Results In this work, we developed a new tool, RVHaplo to reconstruct haplotypes for known viruses from long reads. We tested it rigorously on both simulated and real viral sequencing data and compared it against other popular haplotype reconstruction tools. The results demonstrated that RVHaplo outperforms the state-of-the-art tools for viral haplotype reconstruction from long reads. Especially, RVHaplo can reconstruct the rare (1% abundance) haplotypes that other tools usually missed. Availability The source code and the documentation of RVHaplo are available at https://github.com/dhcai21/RVHaplo. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Lacking strict proofreading mechanisms, many RNA viruses can generate progeny with slightly changed genomes. Being able to characterize highly similar genomes (i.e. haplotypes) in one virus population helps study the viruses’ evolution and their interactions with the host/other microbes. High-throughput sequencing data has become the major source for characterizing viral populations. However, the inherent limitation on read length by next-generation sequencing (NGS) makes complete haplotype reconstruction difficult. Results In this work, we present a new tool named HaploDMF that can construct complete haplotypes using third-generation sequencing (TGS) data. HaploDMF utilizes a deep matrix factorization model with an adapted loss function to learn latent features from aligned reads automatically. The latent features are then used to cluster reads of the same haplotype. Unlike existing tools whose performance can be affected by the overlap size between reads, HaploDMF is able to achieve highly robust performance on data with different coverage, haplotype number, and error rates. In particular, it can generate more complete haplotypes even when the sequencing coverage drops in the middle. We benchmark HaploDMF against the state-of-the-art tools on simulated and real sequencing TGS data on different viruses. The results show that HaploDMF competes favorably against all others. Availability The source code and the documentation of HaploDMF are available at https://github.com/dhcai21/HaploDMF. Supplementary information Supplementary data are available at Bioinformatics online.
The mechanisms controlling biological process, such as the development of disease or cell differentiation, can be investigated by examining changes in the networks of gene dependencies between states in the process. High-throughput experimental methods, like microarray and RNA sequencing, have been widely used to gather gene expression data, which paves the way to infer gene dependencies based on computational methods. However, most differential network analysis methods are designed to deal with fully observed data, but missing values, such as the dropout events in single-cell RNA-sequencing data, are frequent. New methods are needed to take account of these missing values. Moreover, since the changes of gene dependencies may be driven by certain perturbed genes, considering the changes in gene expression levels may promote the identification of gene network rewiring. In this study, a novel weighted differential network estimation (WDNE) model is proposed to handle multi-platform gene expression data with missing values and take account of changes in gene expression levels. Simulation studies demonstrate that WDNE outperforms state-of-the-art differential network estimation methods. When applied WDNE to infer differential gene networks associated with drug resistance in ovarian tumors, cell differentiation and breast tumor heterogeneity, the hub genes in the estimated differential gene networks can provide important insights into the underlying mechanisms. Furthermore, a Matlab toolbox, differential network analysis toolbox, was developed to implement the WDNE model and visualize the estimated differential networks.
Viruses change constantly during replication, leading to high intra-species diversity. Although many changes are neutral or deleterious, some can confer on the virus different biological properties such as better adaptability. In addition, viral genotypes often have associated metadata, such as host residence, which can help with inferring viral transmission during pandemics. Thus, subspecies analysis can provide important insights into virus characterization. Here, we present VirStrain, a tool taking short reads as input with viral strain composition as output. We rigorously test VirStrain on multiple simulated and real virus sequencing datasets. VirStrain outperforms the state-of-the-art tools in both sensitivity and accuracy.
1AbstractGenome epidemiology, which uses genomic data to analyze the source and spread of infectious diseases, provides important information beyond interview-based methods. Given fast accumulation of sequenced viral genomes, a basic need in genome epidemiology is to identify which reference genomes are identical or closest to the ones in a sequenced sample. Then the associated metadata such as the geographical locations can be utilized to infer the transmission network. In this work, we deliver VirStrain, a fast and accurate tool for conducting strain-level analysis from short reads. By using a greedy covering algorithm, we are able to derive unique k-mer combinations for highly similar reference genomes. VirStrain is able to detect the most possible strain and also multiple strains that may simultaneously infect the same host. We tested VirStrain on three types of RNA viruses whose reference genomes have different similarity distributions. For each types of virus, we assessed VirStrain across multiple benchmark datasets of different properties and complexity. The experimental results on both simulated and real sequencing data show that VirStrain outperforms other strain identification tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.