High-dimensional biphoton states are promising resources for quantum applications, ranging from highdimensional quantum communications to quantum imaging. A pivotal task is fully characterising these states, which is generally time-consuming and not scalable when projective measurement approaches are adopted. However, new advances in coincidence imaging technologies allow for overcoming these limitations by parallelising multiple measurements. Here, we introduce biphoton digital holography, in analogy to off-axis digital holography, where coincidence imaging of the superposition of an unknown state with a reference one is used to perform quantum state tomography. We apply this approach to single photons emitted by spontaneous parametric down-conversion in a nonlinear crystal when the pump photons possess various quantum states. The proposed reconstruction technique allows for a more efficient (3 order-of-magnitude faster) and reliable (an average fidelity of 87%) characterisation of states in arbitrary spatial modes bases, compared with previously performed experiments. Multi-photon digital holography may pave the route toward efficient and accurate computational ghost imaging and high-dimensional quantum information processing.
High-dimensional biphoton states are promising resources for quantum applications, ranging from high-dimensional quantum communications to quantum imaging. A pivotal task is fully characterizing these states, which is generally time-consuming and not scalable when projective measurement approaches are adopted; however, new advances in coincidence imaging technologies allow for overcoming these limitations by parallelizing multiple measurements. Here we introduce biphoton digital holography, in analogy to off-axis digital holography, where coincidence imaging of the superposition of an unknown state with a reference state is used to perform quantum state tomography. We apply this approach to single photons emitted by spontaneous parametric down-conversion in a nonlinear crystal when the pump photons possess various quantum states. The proposed reconstruction technique allows for a more efficient (three orders of magnitude faster) and reliable (an average fidelity of 87%) characterization of states in arbitrary spatial modes bases, compared with previously performed experiments. Multiphoton digital holography may pave the route toward efficient and accurate computational ghost imaging and high-dimensional quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.