Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.
Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.
Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS) -a disease with potential to cause severe economic losses to the Brazilian coffee industry. This paper describes a thorough genomic characterization of coffeeinfecting X. fastidiosa strains, initially performed through a microarray-based approach, which demonstrated that CLS strains could be subdivided in two phylogenetically distinct subgroups. Whole-genomic sequencing of two of these bacteria (one from each subgroup) allowed identification of ORFs and horizontally transferred elements (HTEs) that were specific to CLSrelated X. fastidiosa strains. Such analyses confirmed the size and importance of HTEs as major mediators of chromosomal evolution amongst these bacteria, and allowed identification of differences in gene content, after comparisons were made with previously sequenced X. fastidiosa strains, isolated from alternative hosts. Although direct experimentation still needs to be performed to elucidate the biological consequences associated with such differences, it was interesting to verify that CLS-related bacteria display variations in genes that produce toxins, as well as surface-related factors (such as fimbrial adhesins and LPS) that have been shown to be involved with recognition of specific host factors in different pathogenic bacteria.
Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.
The malaria parasite Plasmodium falciparum possesses a unique Acetyl-CoA Synthetase (PfACS), which provides acetyl moieties for different metabolic and regulatory cellular pathways. We characterized PfACS and studied its role focusing on epigenetic modifications using the var gene family as reporter genes. For this, mutant lines to modulate plasmodial ACS expression by degron-mediated protein degradation and ribozyme-induced transcript decay were created. Additionally, an inhibitor of the human Acetyl-CoA Synthetase 2 was tested for its effectiveness in interfering with PfACS. The knockdown of PfACS or its inhibition resulted in impaired parasite growth. Decreased levels of PfACS also led to differential histone acetylation patterns, altered variant gene expression, and concomitantly decreased cytoadherence of infected red blood cells containing knocked-down parasites. Further, ChIP analysis revealed the presence of PfACS in many loci in ring stage parasites, underscoring its involvement in the regulation of chromatin. Due to its central function in the plasmodial metabolism and significant differences to human ACS, PfACS is an interesting target for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.