Induction of IFNα in the upper airways via activation of TLR7 represents a novel immunomodulatory approach to the treatment of allergic asthma. Exploration of 8-oxoadenine derivatives bearing saturated oxygen or nitrogen heterocycles in the N-9 substituent has revealed a remarkable selective enhancement in IFNα inducing potency in the nitrogen series. Further potency enhancement was achieved with the novel (S)-pentyloxy substitution at C-2 leading to the selection of GSK2245035 (32) as an intranasal development candidate. In human cell cultures, compound 32 resulted in suppression of Th2 cytokine responses to allergens, while in vivo intranasal administration at very low doses led to local upregulation of TLR7-mediated cytokines (IP-10). Target engagement was confirmed in humans following single intranasal doses of 32 of ≥20 ng, and reproducible pharmacological response was demonstrated following repeat intranasal dosing at weekly intervals.
Activation of MrgX2, an orphan G protein‐coupled receptor expressed on mast cells, leads to degranulation and histamine release. Human MrgX2 binds promiscuously to structurally diverse peptides and small molecules that tend to have basic properties (basic secretagogues), resulting in acute histamine‐like adverse drug reactions of injected therapeutic agents. We set out to identify MrgX2 orthologues from other mammalian species used in nonclinical stages of drug development. Previously, the only known orthologue of human MrgX2 was from mouse, encoded by Mrgprb2. MrgX2 genes of rat, dog (beagle), minipig, pig, and Rhesus and cynomolgus monkey were identified by bioinformatic approaches and verified by their ability to mediate calcium mobilization in transfected cells in response to the classical MrgX2 agonist, compound 48/80. The peptide GSK3212448 is an inhibitor of the PRC2 epigenetic regulator that caused profound anaphylactoid reactions upon intravenous infusion to rat. We showed GSK3212448 to be a potent MrgX2 agonist particularly at rat MrgX2. We screened sets of drug‐like molecules and peptides to confirm the highly promiscuous nature of MrgX2. Approximately 20% of drug‐like molecules activated MrgX2 (pEC50 ranging from 4.5 to 6), with the principle determinant being basicity. All peptides tested of net charge +3 or greater exhibited agonist activity, including the cell penetrating peptides polyarginine (acetyl‐Arg9‐amide) and TAT (49‐60), a fragment of HIV‐1 TAT protein. Finally, we showed that the glycopeptide antibiotic vancomycin, which is associated with clinical pseudo‐allergic reactions known as red man syndrome, is an agonist of MrgX2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.