A chelating diphosphine ligand with a central N-heterocyclic phosphenium cation (NHP(+)) has been used to explore the coordination chemistry of NHPs with nickel. Treatment of the chlorophosphine precursor [PPP]Cl (1) with stoichiometric Ni(COD)2 affords (PPP)NiCl (8), which is best described as a Ni(II)/NHP(-) phosphido complex formed via oxidative addition of the P-Cl bond. In contrast, treating [PPP]Cl (1) with excess Ni(COD)2 results in a mixture of the trimetallic complex (PPP)2Ni3Cl2 (9) and the reduced NHP-bridged dimer [(PPP)Ni]2 (10). Compound 9 is found to be a Ni(II)Ni(II)Ni(0) complex in which the two NHP ligands act as bridging NHP(-) phosphidos, while complex 10 is a Ni(I)Ni(I) complex that is highly delocalized throughout the symmetric Ni2P2 core. In contrast, the reaction of [PPP][PF6] (11) with Ni(COD)2 affords an asymmetrically-bridged dication [(PPP)Ni]2[PF6]2 (12), which is found to contain two bridging NHP(+) cations bridging two Ni(0) centers. Comproportionation of 10 and 12 affords monocationic [(PPP)Ni]2[PF6] (13), completing the redox series. Nickel complexes 8-10 and 12 are largely similar to their Pd and Pt analogues, but a paramagnetic monocation such as 13 was not observed in the Pd and Pt case. Computational studies lend further insight into the electronic structure and bonding in complexes 8-10 and 12-13, and further support the potential redox non-innocent properties of NHP ligands.
By incorporating an N-heterocyclic phosphenium/phosphide (NHP) ligand into a chelating pincer ligand framework (PPP(+)/PPP(-)), we have elucidated several different and unprecedented binding modes of NHP ligands in homobimetallic, heterobimetallic, and trimetallic metal complexes. One-electron reduction of the previously reported (PPP)(-)/M(II) complexes (PPP)M-Cl (M = Pd (1), Pt (2)) results in clean formation of the symmetric homobimetallic M(I)/M(I) complexes [(μ-PPP)Pd]2 (5) and [(μ-PPP)Pt]2 (6). The tridentate NHP ligand has also been utilized as a bridging linker in the M/Co heterobimetallic compounds (OC)3Co(u-PPP)M(CO) (M = Pd (7), Pt (8)), synthesized via salt elimination from mixtures of 1 and 2 and Na[Co(CO)4]. Furthermore, an NHP-bridged trimetallic complex (PPP)2Pd3Cl2 (9) can be synthesized in a manner similar to precursor 1 (Pd(PPh3)4 + (PPP)Cl) via careful adjustment of reaction stoichiometry. Examination of the interatomic distances and angles in complexes 5-9, in tandem with density functional theory calculations have been used to evaluate and characterize the bonding interactions in these complexes.
Treatment of the N-heterocyclic chlorophosphine precursor (PPP)Cl (1) with two equivalents of nickelocene (NiCp 2 ) affords the phosphorus-bridged dimer [(µ-PPP)Ni 2 Cp 2 ]Cl (2). In contrast, an equimolar mixture of 1 and NiCp 2 in the presence of PPh 3 generates a different product, (PP(C 5 H 5 )P)NiCl 2 (3), in which a cyclopentadienyl anion has migrated to the N-heterocyclic phosphenium center. The phosphorus-bound Cp ring in complex 3 has undergone a [1,5]-hydride shift to afford a vinylic C 5 H 5 ring, and can be subsequently deprotonated to produce [(PP(C 5 H 4 )P)NiCl] (4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.