This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age. Cortical and subcortical grey matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting chronological age (CA)(R2 = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed were the only two significant predictors of decreased brain age. Effect sizes demonstrated that brain age decreased by 0.95 years for each year of education and by 0.58 years for one additional daily FOSC. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by chronological age which supports the utility of regional grey matter volume as a biomarker of healthy brain aging.
Ca2+ wave activity was monitored in the longitudinal (LM) layer of isolated murine caecum and proximal colon at 35 °C with fluo‐4 AM and an iCCD camera. Both intracellular (within LM cells) and intercellular (also spreading from cell to cell) Ca2+ waves were observed. Intracellular Ca2+ waves were associated with a lack of muscle movement whereas intercellular Ca2+ waves, which were five times more intense than intracellular waves, were often associated with localized contractions. Several intracellular Ca2+ waves were present at the same time in individual LM cells. Waves in adjacent LM cells were not coordinated and were unaffected by TTX (1 μM) but were blocked by IP3 receptor antagonists xestospongin‐C (Xe‐C; 2 μM) or 2‐aminoethyl diphenylborate (2‐APB; 25 μM), and by ryanodine (10 μM). Caffeine (5 mm) restored wave activity following blockade with Xe‐C. NiCl2 (1 mm) blocked intracellular Ca2+ waves, and nicardipine (2 μM) reduced their frequency and intensity, but did not affect their velocity, suggesting the sarcoplasmic reticulum may be fuelled by extracellular Ca2+ entry. Intercellular Ca2+ waves often occurred in bursts and propagated rapidly across sizeable regions of the LM layer and were blocked by heptanol (0.5 mm). Intercellular Ca2+ waves were dependent upon neural activity, external Ca2+ entry through L‐type Ca2+ channels, and amplification via calcium‐induced calcium release (CICR). In conclusion, intracellular Ca2+ waves, which may reduce muscle excitability, are confined to individual LM cells. They depend upon Ca2+ release from internal Ca2+ stores and are likely to be fuelled by extracellular Ca2+ entry. Intercellular Ca2+ waves, which are likely to underlie smooth muscle tone, mixing and propulsion, depend upon neural activity, muscle action potential propagation and amplification by CICR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.