The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximately 860 bp mtDNA control region, as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene flow currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.
The lithobiomorph centipede Henicops is widely distributed in Australia and New Zealand, with five described species, as well as two species in New Caledonia and Lord Howe Island. Parsimony, maximum likelihood and Bayesian analyses of ca. 800 aligned bases of sequence data from 16S rRNA and 28S rRNA were conducted on a dataset including multiple individuals of Henicops species from populations sampled from different parts of species' geographic ranges, together with the allied henicopines Lamyctes and Easonobius. Morphological characters are included in parsimony analyses. Molecular and combined datasets unite species from eastern Australia and New Zealand to the exclusion of species from Western Australia, New Caledonia and Lord Howe Island. The molecular data favour these two geographic groupings as clades, whereas inclusion of morphology resolves New Caledonia, Lord Howe Island, southwest Western Australia and Queensland as successive sisters to southeastern Australia and New Zealand. The basal position of the Lord Howe Island species in the phylogeny favours a diversification of Australasian Henicops since the late Miocene unless the Lord Howe species originated in a biota that pre-dates the island. The molecular and combined data resolve the widespread morphospecies H. maculatus as paraphyletic, with its populations contributing to the geographic groupings New South Wales + New Zealand and Tasmania + Victoria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.