Leite-Dellova DC, Oliveira-Souza M, Malnic G, Mello-Aires M. Genomic and nongenomic dose-dependent biphasic effect of aldosterone on Na
mTORC2 is a kinase complex that targets predominantly Akt, SGK1, and PKC, and has well characterized roles in mediating hormone and growth factor effects on a wide array of cellular processes. Recent evidence suggests that mTORC2 is also directly stimulated in renal tubule cells by increased extracellular potassium (K+) concentration, leading to activation of the Na+ channel, ENaC, and increasing the electrical driving force for K+ secretion. We identify here a signaling mechanism for this local effect of K+. We show that an increase in extracellular [K+] leads to a rise in intracellular chloride (Cl-), which stimulates a previously unknown scaffolding activity of With No Lysine-1 (WNK1) kinase. WNK1 interacts selectively with SGK1 and recruits it to mTORC2 resulting in enhanced SGK1 phosphorylation, and SGK1-dependent activation of ENaC. This scaffolding effect of WNK1 is independent of its own kinase activity and does not cause a generalized stimulation of mTORC2 kinase activity. These findings establish a novel WNK1- dependent regulatory mechanism, which harnesses mTORC2 kinase activity selectively toward SGK1 to control epithelial ion transport and electrolyte homeostasis.
The rapid (2 min) nongenomic effects of aldosterone (ALDO) and/or spironolactone (MR antagonist), RU 486 (GR antagonist), atrial natriuretic peptide (ANP) and dimethyl-BAPTA (BAPTA) on the intracellular pH recovery rate (pHirr) via NHE1 (basolateral Na⁺/H⁺ exchanger isoform), after the acid load induced by NH₄Cl, and on the cytosolic free calcium concentration ([Ca²⁺](i)) were investigated in the proximal S3 segment isolated from rats, by the probes BCECF-AM and FLUO-4-AM, respectively. The basal pHi was 7.15±0.008 and the basal pHirr was 0.195±0.012 pH units/min (number of tubules/number of tubular areas=16/96). Our results confirmed the rapid biphasic effect of ALDO on NHE1: ALDO (10⁻¹² M) increases the pHirr to approximately 59% of control value, and ALDO (10⁻⁶ M) decreases it to approximately 49%. Spironolactone did not change these effects, but RU 486 inhibited the stimulatory effect and maintained the inhibitory effect. ANP (10⁻⁶ M) or BAPTA (5×10⁻⁵ M) alone had no significant effect on NHE1 but prevented both effects of ALDO on this exchanger. The basal [Ca²⁺](i) was 104±3 nM (15), and ALDO (10⁻¹² or 10⁻⁶ M) increased the basal [Ca²⁺](i) to approximately 50% or 124%, respectively. RU 486, ANP and BAPTA decreased the [Ca²⁺](i) and inhibited the stimulatory effect of both doses of ALDO. The results suggest the involvement of GR on the nongenomic effects of ALDO and indicate a pHirr-regulating role for [Ca²⁺](i) that is mediated by NHE1, stimulated/impaired by ALDO, and affected by ANP or BAPTA with ALDO. The observed nongenomic hormonal interaction in the S3 segment may represent a rapid and physiologically relevant regulatory mechanism in the intact animal under conditions of volume alterations.
The direct action of aldosterone (10(-12) M) on net bicarbonate reabsorption (J(HCO(3)(-))) was evaluated by stationary microperfusion of an in vivo middle proximal tubule (S2) of rat kidney, using H ion-sensitive microelectrodes. Aldosterone in luminally perfused tubules caused a significant increase in J(HCO(3)(-)) from a mean control value of 2.84 +/- 0.08 [49/19 (n degrees of measurements/n degrees of tubules)] to 4.20 +/- 0.15 nmol.cm(-2).s(-1) (58/10). Aldosterone perfused into peritubular capillaries also increased J(HCO(3)(-)), compared with basal levels during intact capillary perfusion with blood. In addition, in isolated perfused tubules aldosterone causes a transient increase of cytosolic free calcium ([Ca(2+)](i)), monitored fluorometrically. In the presence of ethanol (in similar concentration used to prepare the hormonal solution), spironolactone (10(-6) M, a mineralocorticoid receptor antagonist), actinomycin D (10(-6) M, an inhibitor of gene transcription), or cycloheximide (40 mM, an inhibitor of protein synthesis), the J(HCO(3)(-)) and the [Ca(2+)](i) were not different from the control value; these drugs also did not prevent the stimulatory effect of aldosterone on J(HCO(3)(-)) and on [Ca(2+)](i). However, in the presence of RU 486 alone [10(-6) M, a classic glucocorticoid receptor (GR) antagonist], a significant decrease on J(HCO(3)(-)) and on [Ca(2+)](i) was observed; this antagonist also inhibited the stimulatory effect of aldosterone on J(HCO(3)(-)) and on [Ca(2+)](i). These studies indicate that luminal or peritubular aldosterone (10(-12) M) has a direct nongenomic stimulatory effect on J(HCO(3)(-)) and on [Ca(2+)](i) in proximal tubule and that probably GR participates in this process. The data also indicate that endogenous aldosterone stimulates J(HCO(3)(-)) in middle proximal tubule.
The acute effects of angiotensin-1-7 [ANG-(1-7)] on the reabsorptive bicarbonate flow (J[Formula: see text]) were evaluated using stationary microperfusion in vivo in the proximal tubules of spontaneously hypertensive rats (SHR) and their normotensive controls, Wistar-Kyoto (WKY) rats, using a microelectrode sensitive to H In WKY rats, the control J[Formula: see text] was 2.40 ± 0.10 nmol·cm·s ( = 120); losartan (10 M) or A779 (10 M, a specific Mas antagonist), alone or in combination with losartan, decreased the J[Formula: see text] ANG-(1-7) had biphasic effects on J[Formula: see text]: at 10 M, it inhibited, and at 10, it stimulated the flow. S3226 [10 M, a specific Na-H exchanger 3 (NHE3) antagonist] decreased J[Formula: see text] and changed the stimulatory effect of ANG-(1-7) to an inhibitory one but did not alter the inhibitory action of ANG-(1-7). In SHR, the control J[Formula: see text] was 2.04 ± 0.13 nmol·cm·s ( = 56), and A779 and/or losartan reduced the flow. ANG-(1-7) at 10 M increased J[Formula: see text], and ANG-(1-7) at 10 M reduced it. The effects of A779, losartan, and S3226 on the J[Formula: see text] were similar to those found in WKY rats, which indicated that in SHR, the ANG-(1-7) action on the NHE3 was via Mas and ANG II type 1. The cytosolic calcium in the WKY or SHR rats was ~100 nM and was increased by ANG-(1-7) at 10 or 10 M. In hypertensive animals, a high plasma level of ANG-(1-7) inhibited NHE3 in the proximal tubule, which mitigated the hypertension caused by the high plasma level of ANG II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.