The present work describes the chemical characterization of a chloroform fraction (CF) obtained from an extract of Ocotea puberula (Lauraceae) fruits, and preliminary antinociceptive analysis of CF and the alkaloid dicentrine, isolated from this fraction. CF (30-300 mg/kg, p. o.) caused dose-related inhibition of abdominal constrictions caused by acetic acid and also inhibited both phases of formalin-induced nociception. However, hexane or ethyl acetate fractions did not produce any effect. Antinociception caused by CF (100 mg/kg, p. o.) in the acetic acid test was not affected either by caffeine, an adenosine receptor antagonist, or by naloxone, an opioid receptor antagonist, and neither was associated with nonspecific effects such as muscle relaxation or sedation. Furthermore, dicentrine (30-300 mg/kg, p. o.) produced dose-related inhibition of acetic acid-induced pain without causing changes in the motor performance of mice. The results show, for the first time, that CF from Ocotea puberula fruits produced marked antinociception in different models of chemical pain, and this effect appears to be, at least in part, due to the presence of dicentrine. The mechanism by which CF and the alkaloid produced antinociception still remains unclear, but the adenosinergic or opioid system seems unlikely to be involved in this action.
S-(+)-Dicentrine is an aporphinic alkaloid found in several plant species, mainly from Lauraceae family, which showed significant antinociceptive activity in an acute model of visceral pain in mice. In this work, we extended the knowledge on the antinociceptive properties of S-(+)-dicentrine and showed that this alkaloid also attenuates mechanical and cold hypersensitivity associated with cutaneous inflammation induced by Complete Freund’s Adjuvant in mice. Given orally, S-(+)-dicentrine (100 mg/kg) reversed CFA-induced mechanical hypersensitivity, evaluated as the paw withdrawal threshold to von Frey hairs, and this effect lasted up to 2 hours. S-(+)-Dicentrine also reversed CFA-induced cold hypersensitivity, assessed as the responses to a drop of acetone in the injured paw, but did not reverse the heat hypersensitivity, evaluated as the latency time to paw withdrawal in the hot plate (50°C). Moreover, S-(+)-dicentrine (100 mg/kg, p.o.) was effective in inhibit nociceptive responses to intraplantar injections of cinnamaldehyde, a TRPA1 activator, but not the responses induced by capsaicin, a TRPV1 activator. When administered either by oral or intraplantar routes, S-(+)-dicentrine reduced the licking time (spontaneous nociception) and increased the latency time to paw withdrawal in the cold plate (cold hypersensitivity), both induced by the intraplantar injection of cinnamaldehyde. Taken together, our data adds information about antinociceptive properties of S-(+)-dicentrine in inflammatory conditions, reducing spontaneous nociception and attenuating mechanical and cold hypersensitivity, probably via a TRPA1-dependent mechanism. It also indicates that S-(+)-dicentrine might be potentially interesting in the development of new clinically relevant drugs for the management of persistent pain, especially under inflammatory conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.