We developed a novel approach for conducting multisample, multigene, ultradeep bisulfite sequencing analysis of DNA methylation patterns in clinical samples. A massively parallel sequencing-by-synthesis method (454 sequencing) was used to directly sequence >100 bisulfite PCR products in a single sequencing run without subcloning. We showed the utility, robustness, and superiority of this approach by analyzing methylation in 25 gene-related CpG rich regions from >40 cases of primary cells, including normal peripheral blood lymphocytes, acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). A total of 294,631 sequences was generated with an average read length of 131 bp. On average, >1,600 individual sequences were generated for each PCR amplicon far beyond the few clones (<20) typically analyzed by traditional bisulfite sequencing. Comprehensive analysis of CpG methylation patterns at a single DNA molecule level using clustering algorithms revealed differential methylation patterns between diseases. A significant increase in methylation was detected in ALL and FL samples compared with CLL and MCL. Furthermore, a progressive spreading of methylation was detected from the periphery toward the center of select CpG islands in the ALL and FL samples. The ultradeep sequencing also allowed simultaneous analysis of genetic and epigenetic data and revealed an association between a single nucleotide polymorphism and the methylation present in the LRP1B promoter. This new generation of methylome sequencing will provide digital profiles of aberrant DNA methylation for individual human cancers and offers a robust method for the epigenetic classification of tumor subtypes. [Cancer Res 2007;67(18):8511-8]
This study examined DNA methylation associated with acute lymphoblastic leukemia (ALL) and showed that selected molecular targets can be pharmacologically modulated to reverse gene silencing. A CpG island (CGI) microarray containing more than 3,400 unique clones that span all human chromosomes was used for large-scale discovery experiments and led to 262 unique CGI loci being statistically identified as methylated in ALL lymphoblasts. The methylation status of 10 clones encompassing 11 genes (DCC, DLC-1, DDX51, KCNK2, LRP1B, NKX6-1, NOPE, PCDHGA12, RPIB9, ABCB1, and SLC2A14) identified as differentially methylated between ALL patients and controls was independently verified. Consequently, the methylation status of DDX51 was found to differentiate patients with B-and T-ALL subtypes (P = 0.011, Fisher's exact test). Next, the relationship between methylation and expression of these genes was examined in ALL cell lines (NALM-6 and Jurkat) before and after treatments with 5-aza-2-deoxycytidine and trichostatin A. More than a 10-fold increase in mRNA expression was observed for two previously identified tumor suppressor genes (DLC-1 and DCC) and also for RPIB9 and PCDHGA12. Although the mechanisms that lead to the CGI methylation of these genes are unknown, bisulfite sequencing of the promoter of RPIB9 suggests that expression is inhibited by methylation within SP1 and AP2 transcription factor binding motifs. Finally, specific chromosomal methylation hotspots were found to be associated with ALL. This study sets the stage for acquiring a better biological understanding of ALL and for the identification of epigenetic biomarkers useful for differential diagnosis, therapeutic monitoring, and the detection of leukemic relapse. [Cancer Res 2007;67(6):2617-25]
Non-Hodgkin's lymphoma (NHL) is a group of malignancies of the immune system with variable clinical behaviors and diverse molecular features. Despite the progress made in classification of NHLs based on classical methods, molecular classifications are a work in progress. Toward this goal, we used an arraybased technique called differential methylation hybridization (DMH) to study small B-cell lymphoma (SBCL) subtypes. A total of 43 genomic DMH experiments were performed. From these results, several statistical methods were used to generate a set of differentially methylated genes for further validation. Methylation of LHX2, POU3F3, HOXC10, NRP2, PRKCE, RAMP, MLLT2, NKX6.1, LRP1B and ARF4 was validated in cell lines and patient samples and demonstrated subtype-related preferential methylation patterns. For LHX2 and LRP1B, bisulfite sequencing, real-time reverse transcriptase-polymerase chain reaction and induction of gene expression following treatment with the demethylating agent, 5 0 -aza-2 0 -deoxycytidine, were confirmed. This new epigenetic information is helping to define molecular portraits of distinct subtypes of SBCL that are not recognized by current classification systems and provides valuable potential insights into the biology of these tumors.
Non-Hodgkin's lymphoma (NHL) is a group of malignancies with heterogeneous genetic and epigenetic alterations. Discovery of molecular markers that better define NHL should improve diagnosis, prognosis and understanding of the biology. We developed a CpG island DNA microarray for discovery of aberrant methylation targets in cancer, and now apply this method to examine NHL cell lines and primary tumors. This methylation profiling revealed differential patterns in six cell lines originating from different subtypes of NHL. We identified 30 hypermethylated genes in these cell lines and independently confirmed 10 of them. Methylation of 6 of these genes was then further examined in 75 primary NHL specimens composed of four subtypes representing different stages of maturation. Each gene (DLC-1, PCDHGB7, CYP27B1, EFNA5, CCND1 and RARbeta2) was frequently hypermethylated in these NHLs (87, 78, 61, 53, 40 and 38%, respectively), but not in benign follicular hyperplasia. Although some genes such as DLC-1 and PCDHGB7 were methylated in the vast majority of NHLs, others were differentially methylated in specific subtypes. The methylation of the candidate tumor suppressor gene DLC-1 was detected in a high proportion of primary tumor and plasma DNA samples by using quantitative methylation-specific PCR analysis. This promoter hypermethylation inversely correlated with DLC-1 gene expression in primary NHL samples. Thus, this CpG island microarray is a powerful discovery tool to identify novel methylated genes for further studies of their relevant molecular pathways in NHLs and identification of potential epigenetic biomarkers of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.