Abstract. Mobile phones are set to become the universal interface to online services and cloud computing applications. However, using them for this purpose today is limited to two configurations: applications either run on the phone or run on the server and are remotely accessed by the phone. These two options do not allow for a customized and flexible service interaction, limiting the possibilities for performance optimization as well. In this paper we present a middleware platform that can automatically distribute different layers of an application between the phone and the server, and optimize a variety of objective functions (latency, data transferred, cost, etc.). Our approach builds on existing technology for distributed module management and does not require new infrastructures. In the paper we discuss how to model applications as a consumption graph, and how to process it with a number of novel algorithms to find the optimal distribution of the application modules. The application is then dynamically deployed on the phone in an efficient and transparent manner. We have tested and validated our approach with extensive experiments and with two different applications. The results indicate that the techniques we propose can significantly optimize the performance of cloud applications when used from mobile phones.
We present a technique for partially replicating data items at scale according to expressive policy specifications. Recent projects have addressed the challenge of policy-based replication of personal data (photos, music, etc.) within a network of devices, as an alternative to centralized online services. To date, the policies supported by such systems have been relatively simple, in order to facilitate scaling the policy calculation to large numbers of items.In this paper, we show how such replication systems can scale while supporting much more expressive policies than previous schemes: item replication expressed as constraints, devices referred to by predicates rather than explicitly named, and replication to storage nodes acquired on-demand from the cloud. These extensions introduce considerable complexity in policy evaluation, but we show a system can scale well by using equivalence classes to reduce the problem space. We validate our approach via deployment on an ensemble of devices (phones, PCs, cloud virtual machines, etc.), and show that it supports rich policies and high data volumes using simulations and real data based on personal usage in our group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.