BackgroundThe color of crop leaves is closely correlated with nitrogen (N) status and can be quantified easily with a digital still color camera and image processing software. The establishment of the relationship between image color indices and N status under natural light is important for crop monitoring and N diagnosis in the field. In our study, a digital still color camera was used to take pictures of the canopies of 6 rice (Oryza sativa L.) cultivars with N treatments ranging from 0 to 315 kg N ha-1 in the field under sunny and overcast conditions in 2010 and 2011, respectively.ResultsSignificant correlations were observed between SPAD readings, leaf N concentration (LNC) and 13 image color indices calculated from digital camera images using three color models: RGB, widely used additive color model; HSV, a cylindrical-coordinate similar to the human perception of colors; and the L*a*b* system of the International Commission on Illumination. Among these color indices, the index b*, which represents the visual perception of yellow-blue chroma, has the closest linear relationship with SPAD reading and LNC. However, the relationships between LNC and color indices were affected by the developmental phase. Linear regression models were used to predict LNC and SPAD from color indices and phasic development. After that, the models were validated with independent data. Generally, acceptable performance and prediction were found between the color index b*, SPAD reading and LNC with different cultivars and sampling dates under different natural light conditions.ConclusionsOur study showed that digital color image analysis could be a simple method of assessing rice N status under natural light conditions for different cultivars and different developmental stages.Electronic supplementary materialThe online version of this article (doi:10.1186/1746-4811-10-36) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.