Three kinds of anthracene-based organic dyes for dye-sensitized solar cells (DSSCs) were studied, and their structures are based on a push-pull framework with anthracenyl diphenylamine as the donor connected to a carboxyphenyl or carboxyphenylbromothiazole (BTZ) as the acceptor via an acetylene bridge. The photoelectric properties of the three dyes were investigated using density functional theory (DFT). The simulations indicate that the improvement of anthracene-based dyes (the addition of BTZ and the change of alkyl groups to alkoxy chains) can reduce the energy gap and produce a red shift. This structural modification also improves the light capturing and the electron injection capability, making it excellent in photoelectric conversion efficiency (PCE). In addition, twelve molecules have been designed to regulate photovoltaic performance.
A series of natural photoactive dyes, named as D1–D6 were successfully extracted from six kinds of plant leaves for solar cells. The photoelectrical properties of dyes were measured via UV-Vis absorption spectra, cyclic voltammetry as well as photovoltaic measurement. To theoretically reveal the experimental phenomena, the chlorophyll was selected as the reference dye, where the ground and excited state properties of chlorophyll were calculated via density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The experimental results show that the absorption peaks of those dyes are mainly distributed in the visible light regions of 400–420 nm and 650–700 nm, which are consistent with the absorption spectrum of chlorophyll. The photoelectrical conversion efficiencies of the solar cells sensitized by the six kinds of natural dyes are in the order of D1 > D4 > D2 > D5 > D6 > D3. The dye D1 performance exhibits the highest photoelectrical conversion efficiency of 1.08% among the investigated six natural dyes, with an open circuit voltage of 0.58 V, a short-circuit current density of 2.64 mA cm−2 and a fill factor of 0.70.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.