BackgroundFunctional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenised plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenised to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes.ResultsWe have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented.ConclusionThis publicly available population provides an additional tool for plant researcher's to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.
The Arabidopsis transparent testa (tt) mutant tt19-4 shows reduced seed coat colour, but stains darkly with DMACA and accumulates anthocyanins in aerial tissues. Positional cloning showed that tt19-4 was allelic to tt19-1 and has a G-to-T mutation in a conserved 3Ј-domain in the TT19-4 gene. Soluble and unextractable seed proanthocyanidins and hydrolysis of unextractable proanthocyanidin differ between wild-type Col-4 and both mutants. However, seed quercetins, unextractable proanthocyanidin hydrolysis, and seedling anthocyanin content, and flavonoid gene expression differ between tt19-1 and tt19-4. Transformation of tt19-1 with a TT19-4 cDNA results in vegetative anthocyanins, whereas TT19-4 cDNA cannot complement the proanthocyanidin and pale seed coat phenotype of tt19-1. Both recombinant TT19 and TT19-4 enzymes are functional GSTs and are localized in the cytosol, but TT19 did not function with wide range of flavonoids and natural products to produce conjugation products. We suggest that the dark seed coat of Arabidopsis is related to soluble proanthocyanidin content and that quercetin holds the key to the function of TT19. In addition, TT19 appears to have a 5Ј GSH-binding domain influencing both anthocyanin and proanthocyanidin accumulation and a 3Ј domain affecting proanthocyanidin accumulation by a single amino acid substitution.
Anthocyanins, other flavonoids, and phenolic acids belong to a group of plant natural products with antioxidant activity and may play important roles in plant protection against biotic and abiotic stress and in protection against human diseases. In the present study, the Arabidopsis regulatory gene Production of Anthocyanin Pigment 1 (AtPAP1) was expressed in Brassica napus (canola), and its presence enhanced the antioxidant capacity in transgenic leaves up to 4-fold. Transgenic plants had intense purple coloration, cyanidin and pelargonidin levels were enhanced 50-fold, and quercetin and sinapic acid were 5-fold higher. Consistent with these phytochemical and biological changes, expression for most genes in the flavonoid and phenolic acid biosynthetic pathways was also stimulated.
Two KAN4 transcript splice variants with identical MYB-like B-motifs were highly expressed in sk21-D and equivalently designed activation atk4-OE lines. This extreme dual expression resulted in large, light-and dark-coloured patches on seed coats of sk21-D and atk4-OE lines, but not in non-activated over-expression lines. Flavonoid and proanthocyanidin contents and transcript amounts for genes involved in flavonoid biosynthesis also were reduced in KAN4 activation lines. These results confirm that KAN4 is a regulatory protein which modulates the content of flavonols and PA in Arabidopsis seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.