Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere–ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out. Although theoretical calculations suggest that waves could greatly enhance coexisting turbulence, no field measurements on turbulence have ever validated this mechanism directly. To address this problem, a specially designed field experiment has been conducted. The experimental results indicate that the wave–turbulence interaction-induced enhancement of the background turbulence is indeed the predominant mechanism for turbulence generation and enhancement. Based on this understanding, we propose a new parametrization for vertical mixing as an additive part to the traditional TKE approach. This new result reconfirmed the past theoretical model that had been tested and validated in numerical model experiments and field observations. It firmly establishes the critical role of wave–turbulence interaction effects in both general ocean circulation models and atmosphere–ocean coupled models, which could greatly improve the understanding of the sea surface temperature and water column properties distributions, and hence model-based climate forecasting capability.
Mixing induced by nonbreaking surface waves was investigated in a wave tank by measuring the thermal destratification rate of the water column. One experiment without waves and four experiments with waves of amplitudes ranging from 1.0 to 1.5 cm and wavelength from 30 to 75 cm were conducted. Water temperature variations at depths from 4 to 12 cm below the surface were measured. In the layer from 4 to 7 cm, the originally dense isothermal lines disperse soon after the waves are generated, whereas the vertical gradient from 9 to 12 cm is maintained for a relatively long time. The time span, during which the water temperature becomes well mixed, changes from about 20 h for the case with no waves to tens of minutes for the case with waves, and it decreases with increasing wave amplitude and wavelength. A one-dimensional diffusion numerical model with wave-induced mixing parameterization shows consistent results with the measurement. The study demonstrates that the mixing induced by nonbreaking waves may add an important contribution to the vertical mixing process in the upper ocean and suggests a way to parameterize wave-induced mixing in numerical ocean models.
The impact of ocean surface waves on wind stress at the air–sea interface under low to moderate wind conditions was systematically investigated based on a simple constant flux model and flux measurements obtained from two coastal towers in the East China Sea and South China Sea. It is first revealed that the swell-induced perturbations can reach a height of nearly 30 m above the mean sea surface, and these perturbations disturb the overlying airflow under low wind and strong swell conditions. The wind profiles severely depart from the classical logarithmic profiles, and the deviations increase with the peak wave phase speeds. At wind speeds of less than 4 m s−1, an upward momentum transfer from the wave to the atmosphere is predicted, which is consistent with previous studies. A comparison between the observations and model indicates that the wind stress calculated by the model is largely consistent with the observational wind stress when considering the effects of surface waves, which provides a solution for accurately calculating wind stress in ocean and climate models. Furthermore, the surface waves at the air–sea interface invalidate the traditional Monin–Obukhov similarity theory (MOST), and this invalidity decreases as observational height increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.