Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.
Gradient colored yarns are manufactured by controlling the blending ratios of three-primary-colored fibers in a slight distribution of gradients along the yarn length, thereby resulting in a continuous natural variation in mixed colors of the fibers throughout the whole yarn. The spinning of gradient colored yarns still remains a challenge, which requires the reliance on digital blending theory of colored fibers and the supporting of multi-channel computer numerical control (CNC) spinning technique. This paper constructed a three-primary-colored fiber gridded color mixing model and its mass mixing matrix and color mixing chromatography matrix by mass discretization and coupling pairing with a 10% gradient for the three-primary-colored fibers. With the aim of continuous natural gradient of mixed colors, the blending ratio gradient path of three-primary-colored fibers was planned based on the mass mixing matrix, and a method of regulating the gradient of color difference between adjacent color segments was proposed. In order to realize the natural gradient of color of the forming yarn, the spinning mechanism of gradient colored yarn was established based on three-channel CNC spinning mechanism and the time-series yarn simulation model, and the time-series spinning processing parameters of three-channel CNC spinning machine were devised. Four gradient colored yarns with different gradient paths were designed and prepared, the linear density, twist, unevenness, surface hairiness, and tensile strength of the spun yarns were measured, compared, and analyzed, and knitted fabrics with color gradient effect were fabricated by small circular knitting machine to obtain continuous and natural color transition with a dreamy and mysterious color effect.
Ammonia was used as catalyst to synthesize spherical silica particles by Stober process. More details about the effect of ammonia concentration on the silica powders were investigated. With increase of ammonia concentration from 0.05 to 1.75 mol/L, it was found that particle size increased from 0.068 to 0.91 μm and number density of silica particles decreased rapidly from 9242.40 x 10(10) to 4.62 x 10(10)/mL. Besides, the ratio of standard deviation and the particle size decreased with the increase of ammonia concentration. These results were well consistent with prediction of aggregation model. It was proved that ammonia resulted in persistently high pH values of solutions, which were vital to form large silica spheres. In the formation process of silica spheres, solution hydroxyl concentration was reduced, which might be attributed to transfer of negative charge in hydroxyl groups to silica spheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.