The therapeutic potential of umbilical cord blood mesenchymal stem cells has been studied in several diseases. However, the possibility that human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hUCMSCs) can be used to treat neonatal hypoxic-ischemic encephalopathy (HIE) has not yet been investigated. This study focuses on the potential therapeutic effect of hUCMSC transplantation in a rat model of HIE. Dermal fibroblasts served as cell controls. HIE was induced in neonatal rats aged 7 days. hUCMSCs labeled with Dil were then transplanted into the models 24 hr or 72 hr post-HIE through the peritoneal cavity or the jugular vein. Behavioral testing revealed that hUCMSC transplantation but not the dermal fibroblast improved significantly the locomotor function vs. vehicle controls. Animals receiving cell grafts 24 hr after surgery showed a more significant improvement than at 72 hr. More hUCMSCs homed to the ischemic frontal cortex following intravenous administration than after intraperitoneal injection. Differentiation of engrafted cells into neurons was observed in and around the infarct region. Gliosis in ischemic regions was significantly reduced after hUCMSC transplantation. Administration of ganglioside (GM1) enhanced the behavioral recovery on the base of hUCMSC treatment. These results demonstrate that intravenous transplantation of hUCMSCs at an early stage after HIE can improve the behavior of hypoxic-ischemic rats and decrease gliosis. Ganglioside treatment further enhanced the recovery of neurological function following hUCMSC transplantation.
Lycium barbarum is used both as a food additive and as a medicinal herb in many countries, and L. barbarum polysaccharides (LBPs), a major cell component, are reported to have a wide range of beneficial effects including neuroprotection, anti-aging and anticancer properties, and immune modulation. The effects of LBPs on neuronal function, neurogenesis, and drug-induced learning and memory deficits have not been assessed. We report the therapeutic effects of LBPs on learning and memory and neurogenesis in scopolamine (SCO)-treated rats. LBPs were administered via gastric perfusion for 2 weeks before the onset of subcutaneous SCO treatment for a further 4 weeks. As expected, SCO impaired performance in novel object and object location recognition tasks, and Morris water maze. However, dual SCO- and LBP-treated rats spent significantly more time exploring the novel object or location in the recognition tasks and had significant shorter escape latency in the water maze. SCO administration led to a decrease in Ki67- or DCX-immunoreactive cells in the dentate gyrus and damage of dendritic development of the new neurons; LBP prevented these SCO-induced reductions in cell proliferation and neuroblast differentiation. LBP also protected SCO-induced loss of neuronal processes in DCX-immunoreactive neurons. Biochemical investigation indicated that LBP decreased the SCO-induced oxidative stress in hippocampus and reversed the ratio Bax/Bcl-2 that exhibited increase after SCO treatment. However, decrease of BDNF and increase of AChE induced by SCO showed no response to LBP administration. These results suggest that LBPs can prevent SCO-induced cognitive and memory deficits and reductions in cell proliferation and neuroblast differentiation. Suppression of oxidative stress and apoptosis may be involved in the above effects of LBPs that may be a promising candidate to restore memory functions and neurogenesis.
Long non‐coding RNAs have recently become a key regulatory factor for cancers, whereas FER1L4, a newly discovered long non‐coding RNA, has been mostly studied in gastric carcinoma and colon cancer cases. The functions and molecular mechanism of FER1L4 have been rarely reported in glioma malignant phenotypes. In this study, it was found that the expression of LncRNA FER1L4 is upregulated in high‐grade gliomas than in low‐grade cases and that a high expression of LncRNA FER1L4 predicts poor prognosis of gliomas. Meanwhile, in vitro study suggests that expression of FER1L4 with SiRNA knockdown obviously suppresses cell cycle and proliferation. It is further demonstrated by experiments that the FER1L4 knockdown suppresses growth of in vivo glioma. Besides, it is found in our study that LncRNA FER1L4 expression is positively correlated with E2F1 mRNA expression. After knockdown of FER1L4 expression, E2F1 expression is significantly down‐regulated, whereas the expression of miR‐372 is significantly up‐regulated; the up‐regulation of miR‐372 leads to significant down‐regulation of FER1L4 and E2F1 expression. In addition, it is also found that FER1L4 can be used as competitive endogenous RNA to interact or bind with miR‐371 and thereby up‐regulate E2F1, thus promoting the cycle and proliferation of glioma cells. It may be one of the molecular mechanisms in which FER1L4 plays its oncogene‐like role in gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.