The schizothoracine fishes, the largest and most diverse group of the Tibetan Plateau (the Qinghai-Tibetan Plateau) ichthyofauna (Chen & Cao, 2000), are a good model for investigating patterns of evolutionary mechanisms and biogeography. These fishes are specialized for high-elevation rivers and show wonderful adaptations. They dominate the torrential mountain streams and plateau lakes of Central Asia, the Himalayas and the Tibetan Plateau. With c. 68 species, the genus ABSTRACTAim To test a vicariant speciation hypothesis derived from geological evidence of large-scale changes in drainage patterns in the late Miocene that affected the drainages in the south-eastern Tibetan Plateau.Location The Tibetan Plateau and adjacent areas.Methods The cytochrome b DNA sequences of 30 species of the genus Schizothorax from nine different river systems were analysed. These DNA sequences were analysed using parsimony, maximum likelihood and Bayesian methods. The approximately unbiased and Shimodaira-Hasegawa tests were applied to evaluate the statistical significance of the shortest trees relative to alternative hypotheses. Dates of divergences between lineages were estimated using the nonparametric rate smoothing method, and confidence intervals of dates were obtained by parametric bootstrapping.Results The phylogenetic relationships recovered from molecular data were inconsistent with traditional taxonomy, but apparently reflected geographical associations with rivers. Within the genus Schizothorax, we observed a divergence between the lineages from the Irrawaddy-Lhuit and Tsangpo-Parlung rivers, and tentatively dated this vicariant event back to the late Miocene (7.3-6.8 Ma). We also observed approximately simultaneous geographical splits within drainages of the south-eastern Tibetan Plateau, the Irrawaddy, the Yangtze and the MekongSalween rivers in the late Miocene (7.1-6.2 Ma).Main conclusions Our molecular evidence tentatively highlights the importance of palaeoriver connections and the uplift of the Tibetan Plateau in understanding the evolution of the genus Schizothorax. Molecular estimates of divergence times allowed us to date these vicariant scenarios back to the late Miocene, which agrees with geological suggestions for the separation of these drainages caused by tectonic uplift in south-eastern Tibet. Our results indicated the substantial role of vicariant-based speciation in shaping the current distribution pattern of the genus Schizothorax.
Agricultural intensification through increasing fertilization input and cropland expansion has caused rapid loss of semi-natural habitats and the subsequent loss of natural enemies of agricultural pests. It is however extremely difficult to disentangle the effects of agricultural intensification on arthropod communities at multiple spatial scales. Based on a two-year study of seventeen 1500 m-radius sites, we analyzed the relative importance of nitrogen input and cropland expansion on cereal aphids and their natural enemies. Both the input of nitrogen fertilizer and cropland expansion benefited cereal aphids more than primary parasitoids and leaf-dwelling predators, while suppressing ground-dwelling predators, leading to an disturbance of the interspecific relationship. The responses of natural enemies to cropland expansion were asymmetric and species-specific, with an increase of primary parasitism but a decline of predator/pest ratio with the increasing nitrogen input. As such, agricultural intensification (increasing nitrogen fertilizer and cropland expansion) can destabilize the interspecific relationship and lead to biodiversity loss. To this end, sustainable pest management needs to balance the benefit and cost of agricultural intensification and restore biocontrol service through proliferating the role of natural enemies at multiple scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.