Magnetic Resonance Relaxometry is a quantitative MRI-based technique able to estimate tissue relaxation times T1 and T2. This approach allows increasing the MRI diagnostic accuracy mostly in case of brain neoplasia or neurodegenerative disorders in human medicine. However, few reports are available on the application of this technique in the clinical field of veterinary medicine. For this reason, in this work, we developed a relaxometry based approach on experimentally induced brain hemorrhages on rabbits. Specifically, the methodology is based on a hierarchical clustering procedure driven by the T1 relaxometry signals from a set of regions of interest selected on the T2 map. The approach is multivariate since it combines both T1 and T2 information and allows the diagnosis at the subject level by comparing “suspected” pathological regions with healthy homologous ones within the same brain.To validate the proposed technique, the scanned brains underwent histopathological analyses to estimate the performance of the proposed classifier in terms of Receiver Operator Curve analyses. The results showed that, in terms of identification of the lesion and its contours, the proposed approach resulted accurate and outperformed the standard techniques based on T1w and T2w images. Finally, since the proposed protocol in terms of the adopted scanner, sequences, and analysis tools, is suitable for the clinical practice, it can be potentially validated through large-scale multi-center clinical studies.
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under c ontract DE•AC52•06N A25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexc lusive, royalty-free license to publish or rep roduce the publis hed form of th is co ntri bution, or to allow others to do so, for U.S. Government purposes. Los Alamos Nati onal Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, th e Laborato ry does not endorse the viewpoint of a publ ication or guarantee its technical correctness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.