Advances in cancer research over the past half-century have clearly determined the molecular origins of the disease. Central to the use of molecular signatures for continued progress, including rapid, reliable, and early diagnosis is the use of biomarkers. Specifically, extracellular vesicles as biomarker cargo holders have generated significant interest. However, the isolation, purification, and subsequent analysis of these extracellular vesicles remain a challenge. Technological advances driven by microfluidics-enabled devices have made the challenges for isolation of extracellular vesicles an emerging area of research with significant possibilities for use in clinical settings enabling point-of-care diagnostics for cancer. In this article, we present a tutorial review of the existing microfluidic technologies for cancer diagnostics with a focus on extracellular vesicle isolation methods.
Bacterial infections continue to pose serious public health challenges. Though anti-bacterial therapeutics are effective remedies for treating these infections, the emergence of antibiotic resistance has imposed new challenges to treatment. Often, there is a delay in prescribing antibiotics at initial symptom presentation as it can be challenging to clinically differentiate bacterial infections from other organisms (e.g., viruses) causing infection. Moreover, bacterial infections can arise from food, water, or other sources. These challenges have demonstrated the need for rapid identification of bacteria in liquids, food, clinical spaces, and other environments. Conventional methods of bacterial identification rely on culture-based approaches which require long processing times and higher pathogen concentration thresholds. In the past few years, microfluidic devices paired with various bacterial identification methods have garnered attention for addressing the limitations of conventional methods and demonstrating feasibility for rapid bacterial identification with lower biomass thresholds. However, such culture-free methods often require integration of multiple steps from sample preparation to measurement. Research interest in using microfluidic methods for bacterial identification is growing; therefore, this review article is a summary of current advancements in this field with a focus on comparing the efficacy of polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and emerging spectroscopic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.