Gait analysis continues to be an important technique for many clinical applications to diagnose and monitor certain diseases. Many mental and physical abnormalities cause measurable differences in a person's gait. Gait analysis has applications in sport, computer games, physical rehabilitation, clinical assessment, surveillance, human recognition, modeling, and many other fields. There are established methods using various sensors for gait analysis, of which accelerometers are one of the most often employed. Accelerometer sensors are generally more user friendly and less invasive. In this paper, we review research regarding accelerometer sensors used for gait analysis with particular focus on clinical applications. We provide a brief introduction to accelerometer theory followed by other popular sensing technologies. Commonly used gait phases and parameters are enumerated. The details of selecting the papers for review are provided. We also review several gait analysis software. Then we provide an extensive report of accelerometry-based gait analysis systems and applications, with additional emphasis on trunk accelerometry. We conclude this review with future research directions.
This paper presents a new approach to gait analysis and parameter estimation from a single miniaturized ear-worn sensor embedded with a triaxial accelerometer. Singular spectrum analysis combined with the longest common subsequence algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance, and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 min on a treadmill with an increasing incline of 2% every 2 min. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance, and stride times were obtained as 35.5 ±3.99 ms, 36.9 ±3.84 ms, and 17.9 ±2.29 ms, respectively.
In an attempt to reduce the infection rate of the COrona VIrus Disease-19 (Covid-19) countries around the world have echoed the exigency for an economical, accessible, point-of-need diagnostic test to identify Covid-19 carriers so that they (individuals who test positive) can be advised to self isolate rather than the entire community. Availability of a quick turnaround time diagnostic test would essentially mean that life, in general, can return to normality-at-large. In this regards, studies concurrent in time with ours have investigated different respiratory sounds, including cough, to recognise potential Covid-19 carriers. However, these studies lack clinical control and rely on Internet users confirming their test results in a web questionnaire (crowdsourcing) thus rendering their analysis inadequate. We seek to evaluate the detection performance of a primary screening tool of Covid-19 solely based on the cough sound from 8,380 clinically validated samples with laboratory molecular-test (2,339 Covid-19 positive and 6,041 Covid-19 negative) under quantitative RT-PCR (qRT-PCR) from certified laboratories. All collected samples were clinically labelled, i.e. Covid-19 positive or negative, according to the results in addition to the disease severity based on the qRT-PCR threshold cycle (Ct) and lymphocytes count from the patients. Our proposed generic method is an algorithm based on Empirical Mode Decomposition (EMD) for cough sound detection with subsequent classification based on a tensor of audio sonographs and deep artificial neural network classifier with convolutional layers called 'DeepCough'. Two different versions of DeepCough based on the number of tensor dimensions, i.e. DeepCough2D and DeepCough3D, have been investigated. These methods have been deployed in a multi-platform prototype web-app 'CoughDetect'.Covid-19 recognition results rates achieved a promising AUC (Area Under Curve) of 98.80% ± 0.83%, sensitivity of 96.43% ± 1.85%, and specificity of 96.20% ± 1.74% and average AUC of 81.08% ± 5.05% for the recognition of three severity levels. Our proposed web tool as a pointof-need primary diagnostic test for Covid-19 facilitates the rapid detection of the infection. We believe it has the potential to significantly hamper the Covid-19 pandemic across the world.
A 3-week LS training programme promoted stress-related adaptations likely to directly, or indirectly, support the acquisition of new surgical skills, and many outcomes were retained after a 4-week period without further LS training. These results have implications for medical training and education (e.g. distributed training for skill development and maintenance, stress resource and management training) and highlighted possible areas for new research (e.g. longitudinal stress and skill profiling).
Abstract. This study assesses the connectivity alterations caused by Alzheimer's disease (AD) and mild cognitive impairment (MCI) in the magnetoencephalogram (MEG) background activity. Moreover, a novel methodology to adaptively extract brain rhythms from the MEG is introduced. This methodology relies on the ability of an Empirical Mode Decomposition (EMD) to isolate local signal oscillations and a constrained Blind Source Separation (cBSS) to extract the activity that jointly represents a subset of channels. Inter-regional MEG connectivity was analysed for 36 AD, 18 MCI, and 26 control subjects in δ, θ, α, and β bands over left and right central, anterior, lateral, and posterior regions with magnitude squared coherence -c(f ). For the sake of comparison, c(f ) was calculated from the original MEG channels and from the adaptively extracted rhythms. The results indicated that AD and MCI cause slight alterations in the MEG connectivity. c(f ) computed from the extracted rhythms distinguished AD and MCI subjects from controls with 69.4% and 77.3% accuracies, respectively, in a full leave-one-out cross-validation evaluation. These values were higher than those obtained without the proposed extraction methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.