In this paper, we describe a brand new key exchange protocol based on a semidirect product of (semi)groups (more specifically, on extension of a (semi)group by automorphisms), and then focus on practical instances of this general idea. Our protocol can be based on any group, in particular on any non-commutative group. One of its special cases is the standard Diffie-Hellman protocol, which is based on a cyclic group. However, when our protocol is used with a non-commutative (semi)group, it acquires several useful features that make it compare favorably to the Diffie-Hellman protocol. Here we also suggest a particular non-commutative semigroup (of matrices) as the platform and show that security of the relevant protocol is based on a quite different assumption compared to that of the standard Diffie-Hellman protocol.
Abstract. We offer a public key exchange protocol in the spirit of Diffie-Hellman, but we use (small) matrices over a group ring of a (small) symmetric group as the platform. This "nested structure" of the platform makes computation very efficient for legitimate parties. We discuss security of this scheme by addressing the Decision Diffie-Hellman (DDH) and Computational Diffie-Hellman (CDH) problems for our platform.
The Anshel-Anshel-Goldfeld (AAG) key-exchange protocol was implemented and studied with the braid groups as its underlying platform. The length-based attack, introduced by Hughes and Tannenbaum, has been used to cryptanalyze the AAG protocol in this setting. Eick and Kahrobaei suggest to use the polycyclic groups as a possible platform for the AAG protocol. In this paper, we apply several known variants of the length-based attack against the AAG protocol with the polycyclic group as the underlying platform. The experimental results show that, in these groups, the implemented variants of the length-based attack are unsuccessful in the case of polycyclic groups having high Hirsch length. This suggests that the length-based attack is insu cient to cryptanalyze the AAG protocol when implemented over this type of polycyclic groups. This implies that polycyclic groups could be a potential platform for some cryptosystems based on conjugacy search problem, such as non-commutative Di e-Hellman, El Gamal and Cramer-Shoup key-exchange protocols. Moreover, we compare for the rst time the success rates of the di erent variants of the length-based attack. These experiments show that, in these groups, the memory length-based attack introduced by Garber, Kaplan, Teicher, Tsaban and Vishne does better than the other variants proposed thus far in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.