Convergent morphologies often arise due to similar selective pressures in independent lineages. It is poorly understood whether the same or different developmental genetic mechanisms underlie such convergence. Here we show that independent evolution of a reproductive trait, ovariole number, has resulted from changes in distinct developmental mechanisms, each of which may have a different underlying genetic basis in Drosophila. Ovariole number in Drosophila is species-specific, highly variable, and largely under genetic control. Convergent changes in Drosophila ovariole number have evolved independently within and between species. We previously showed that the number of a specific ovarian cell type, terminal filament (TF) cells, determines ovariole number. Here we examine TF cell development in different Drosophila lineages that independently evolved a significantly lower ovariole number than the D. melanogaster Oregon R strain. We show that in these Drosophila lineages, reduction in ovariole number occurs primarily through variations in one of two different developmental mechanisms: (1) reduced number of somatic gonad precursors (SGP cells) specified during embryogenesis; or (2) alterations of somatic gonad cell morphogenesis and differentiation in larval life. Mutations in the D. melanogaster Insulin Receptor (InR) alter SGP cell number but not ovarian morphogenesis, while targeted loss of function of bric-à-brac 2 (bab2) affects morphogenesis without changing SGP cell number. Thus, evolution can produce similar ovariole numbers through distinct developmental mechanisms, likely controlled by different genetic mechanisms.
Phenotypic plasticity is the ability of a single genotype to yield distinct phenotypes in different environments. The molecular mechanisms linking phenotypic plasticity to the evolution of heritable diversification, however, are largely unknown. Here, we show that insulin/insulin-like growth factor signalling (IIS) underlies both phenotypic plasticity and evolutionary diversification of ovariole number, a quantitative reproductive trait, in Drosophila. IIS activity levels and sensitivity have diverged between species, leading to both species-specific ovariole number and species-specific nutritional plasticity in ovariole number. Plastic range of ovariole number correlates with ecological niche, suggesting that the degree of nutritional plasticity may be an adaptive trait. This demonstrates that a plastic response conserved across animals can underlie the evolution of morphological diversity, underscoring the potential pervasiveness of plasticity as an evolutionary mechanism.
The monarch butterfly (Danaus plexippus) complements its iconic migration with diapause, a hormonally controlled developmental programme that contributes to winter survival at overwintering sites. Although timing is a critical adaptive feature of diapause, how environmental cues are integrated with genetically‐determined physiological mechanisms to time diapause development, particularly termination, is not well understood. In a design that subjected western North American monarchs to different environmental chamber conditions over time, we modularized constituent components of an environmentally‐controlled, internal diapause termination timer. Using comparative transcriptomics, we identified molecular controllers of these specific diapause termination components. Calcium signalling mediated environmental sensitivity of the diapause timer, and we speculate that it is a key integrator of environmental condition (cold temperature) with downstream hormonal control of diapause. Juvenile hormone (JH) signalling changed spontaneously in diapause‐inducing conditions, capacitating response to future environmental condition. Although JH is a major target of the internal timer, it is not itself the timer. Epigenetic mechanisms are implicated to be the proximate timing mechanism. Ecdysteroid, JH, and insulin/insulin‐like peptide signalling are major targets of the diapause programme used to control response to permissive environmental conditions. Understanding the environmental and physiological mechanisms of diapause termination sheds light on fundamental properties of biological timing, and also helps inform expectations for how monarch populations may respond to future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.