N-acetylneuraminic acid at the surfaces of rat cerebral cortex and liver mitochondria and derived mitoplasts (inner membrane plus matrix particles) was studied biochemically and electrokinetically . Rat cerebral cortex mitochondria in 0 .0145 M NaCl, 4 .5 % sorbitol, pH 7 .2 t 0 .1, 0 .6 mm NaHCO 3, had an electrophoretic mobility of -2 .88 f 0 .01 u/sec per v per cm . In the same solution the electrophoretic mobility of rat liver mitochondria was -2 .01 f 0 .02, of rat liver mitoplasts was -1 .22 f 0 .07, and of rat cerebral cortex mitoplasts -0 .91 ± 0 .04 µ/sec per v per cm . Treatment of these particles with 50 µg neuraminidase/mg particle protein resulted in the following electrophoretic mobilities in µ/sec per v per cm : rat cerebral cortex mitochondria, -2 .27 ; rat liver mitochondria, -1 .40 ; rat cerebral cortex mitoplasts, -0 .78 ; and rat liver mitoplasts, -1 .10 . Rat liver mitochondria, mitoplasts, and outer mitochondrial membranes contained 2 .0, 1 .1, and 4.1 nmoles of sialic acid/mg protein, respectively . 10% of the liver mitochondrial protein and 27 .5% of the sialic acid was solubilized in the mitoplast and outer membrane isolation procedure . Rat cerebral cortex mitochondria, mitoplasts, and outer mitochondrial membranes contained 3 .1, 0 .8, and 6 .2 nmoles sialic acid/mg protein, respectively ; 10% of the brain mitochondrial protein and 49% of the sialic acid was solubilized in the mitoplast and outer membrane isolation solution procedure . Treatment of both the rat liver and cerebral cortex mitochondria with 50 µg neuraminidase (dry weight) /mg protein resulted in the release of about 50% of the available outer membrane sialic acid residues . Treatment of all of the particles with trypsin caused release of sialic acid but did not greatly affect the particle electrophoretic mobility . In each instance, curves of pH vs . electrophoretic mobility indicated that the particle surface contained an acid dissociable group, most likely a carboxyl group of sialic acid with pKa -2 .7 . Treatment of either the rat liver or the cerebral cortex mitochondria with trypsinized concanavalin A did not affect the particle electrophoretic mobility but did cause a decrease in the electrophoretic mobility of L5178Y mouse leukemic cells .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.