With the progress of sci-tech, the interdisciplinary and comprehensive development, and various advanced sci-tech gradually integrated into the field of sports, it has become possible to study how to reasonably prevent sports injuries, minimize the risk of sports injuries, and maintain the best physical condition of retired athletes. Due to the long-term high-load exercise of retired athletes during their sports career, athletes’ physical functions have been damaged to varying degrees, resulting in more injuries. According to the characteristics that many factors need to be considered in the prediction of retired athletes’ injuries, this paper puts forward an improved self-organizing neural network (SOM) method to predict retired athletes’ injuries. In this paper, an early warning analysis model of retired athletes’ susceptibility to injury based on SOM is proposed, which screens the state of retired athletes’ physical function variables in each stage, considers athletes’ physical function data whose standard deviation is higher than the limit specification of susceptibility to injury as susceptible injury data, quickly judges all vulnerable injury data, and completes the high-speed early warning analysis of retired athletes’ susceptibility to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.