For proton exchange membrane water electrolysis (PEMWE) to become competitive, the cost of stack components, such as bipolar plates (BPP), needs to be reduced. This can be achieved by using coated low-cost materials, such as copper as alternative to titanium. Herein we report on highly corrosion-resistant copper BPP coated with niobium. All investigated samples showed excellent corrosion resistance properties, with corrosion currents lower than 0.1 µA cm−2 in a simulated PEM electrolyzer environment at two different pH values. The physico-chemical properties of the Nb coatings are thoroughly characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). A 30 µm thick Nb coating fully protects the Cu against corrosion due to the formation of a passive oxide layer on its surface, predominantly composed of Nb2O5. The thickness of the passive oxide layer determined by both EIS and XPS is in the range of 10 nm. The results reported here demonstrate the effectiveness of Nb for protecting Cu against corrosion, opening the possibility to use it for the manufacturing of BPP for PEMWE. The latter was confirmed by its successful implementation in a single cell PEMWE based on hydraulic compression technology.
In this paper, the possibility of using ceftriaxone (CEFTR) active substance from expired cefort drug as corrosion inhibitor for nickel in acid solutions has been investigated. 0.5 M sulfuric acid and 1 M hydrochloric acid were used as corrosive media in experimental studies. The electrochemical behavior of ceftriaxone and its stability in test solutions have been examined by cyclic voltammetry. Further, the inhibitory effect has been studied by several methods: weight loss measurements, linear polarization and electrochemical impedance spectroscopy. As well, Tafel plots method was used in order to determine the kinetic parameters. Surface morphology of corroded samples has been characterized by scanning electron microscopy.
Corrosion inhibitors represent one of the most commonly used methods for significantly reducing the corrosion rate of metals and alloys. Adsorption inhibitors have a wide range of applications in cooling water systems, deicing solutions for aircrafts, airports and ways, etching and degreasing solutions, oil pipelines, paints and coatings and metal processing solutions. Adsorption corrosion inhibitors of metals and alloys are generally organic compounds that contain structures with heteroatoms (N, P, S, As, O) in their molecules, having lone pair electrons or π electrons in aromatic rings or multiple bonds. They enable relatively strong interactions between the metal atoms and organic molecules, resulting in a protective layer of organic molecules adsorbed at the metal–corrosive solution interface. Most molecules of active substances from drugs contain similar structures, which is why many drugs have been already tested as corrosion inhibitors. One of the major disadvantages of using drugs for this purpose is their particularly high price. To overcome this impediment, the possibility of using expired drugs as corrosion inhibitors has been investigated since 2009. The present paper is an exhaustive compilation of the scientific published papers devoted to the use of expired drugs as corrosion inhibitors in various aggressive solutions. The inhibitory efficiencies of expired drugs are presented as a function of the studied metal or alloy and the nature of the aggressive solution, as well as the concentration of the inhibitor in such a solution. Research has especially been focused on mild and carbon steel and less on stainless steel, as well as on some metals such as copper, zinc, nickel, tin and aluminum and its alloys. The experimental methods used to assess the inhibitory efficiencies of expired drugs are briefly discussed. Also, the available information on the stability of the active substances in the drugs is presented, although most authors were not concerned with this aspect. Finally, several actions are revealed that must be undertaken by researchers so that the results obtained in the study of the anticorrosive action of expired drugs can be applied at the industrial level and not remain only an academic concern.
The current work explores the potential for recycling unused or expired Midazolam (MID) drug, a benzodiazepine derivative, as an efficient corrosion inhibitor for copper in nitric acid solution. The technical advantage of recycling expired MID drug relates to the avoidance of organic inhibitor production costs and the reduction of disposal costs of the expired medication. A combination of electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy), weight loss, and quantum chemical calculation were used to assess the inhibition mechanism and efficiency of MID. It was found that inhibition efficiency increases with inhibitor concentration, reaching a highest value of 92.9% for a concentration of 10−4 M MID. MID was classified as a mixed-type inhibitor, showing a preferential cathodic suppression mechanism. The obtained values of −45.89 kJ mol−1 for the standard free energy of adsorption indicate that the inhibition mechanism is based on chemisorption of MID molecules on the copper surface, which obeys the Langmuir isotherm. Surface analysis using scanning electronic microscopy revealed that MID offers high protection against corrosion during both immersion and polarization tests. Molecular modelling and quantum chemical calculations indicated chemical interactions between MID molecules and the copper surface, as well as electrostatic interactions. The results obtained using the different techniques were in good agreement and highlight the effectiveness of MID in the corrosion inhibition of copper.
Cost reduction in bipolar plates in proton exchange membrane water electrolyzers has previously been attempted by substituting bulk titanium with austenitic stainless steels protected with highly conductive and corrosion-resistant coatings. However, austenitic steels are more expensive than ferritic steels due to their high nickel content. Herein we report on the corrosion resistance of two high chromium ferritic stainless steels, AISI 442 and AISI 446, as an alternative material to manufacture bipolar plates. Electrochemical corrosion tests have shown that AISI 442 and AISI 446 have similar corrosion resistance, while AISI 446 reveals more noble corrosion potential and performs better during potentiostatic stress tests. The current density obtained during polarization at 2 V versus the standard hydrogen electrode (SHE) is 3.3 mA cm−2, which is more than two times lower than on AISI 442. Additionally, surface morphology characterization demonstrates that in contrast to AISI 442, AISI 446 is not sensitive to intercrystalline or pitting corrosion. Moreover, EDX energy dispersion analysis of AISI 446 reveals no differences in the chemical composition of the surface layer compared to the base material, as a confirmation of its high corrosion resistance. The results of this work open up the perspective of replacing austenitic stainless steels with less expensive ferritic stainless steels for the production of components such as bipolar plates in proton exchange membrane water electrolyzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.